Skip to main content
Log in

Wolbachia Infections in Drosophila Melanogaster and D. Simulans: Polymorphism and Levels of Cytoplasmic Incompatibility

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Wolbachia are endosymbiotic bacteria, widespread in terrestrial Arthropods. They are mainly transmitted vertically, from mothers to offspring and induce various alterations of their hosts’ sexuality and reproduction, the most commonly reported phenomenon being Cytoplasmic Incompatibility (CI), observed in Drosophila melanogaster and D. simulans. Basically, CI results in a more or less intense embryonic mortality, occurring in crosses between males infected by Wolbachia and uninfected females. In D. simulans, Wolbachia and CI were observed in 1986. Since then, this host species has become a model system for investigating the polymorphism of Wolbachia infections and CI. In this review we describe the different Wolbachia infections currently known to occur in D. melanogaster and D. simulans. The two species are highly contrasting with regard to symbiotic diversity: while five Wolbachia variants have been described in D. simulans natural populations, D. melanogaster seems to harbor one Wolbachia variant only. Another marked difference between these two Drosophila species is their permissiveness with regard to CI, which seems to be fully expressed in D. simulans but partially or totally repressed in D. melanogaster, demonstrating the involvement of host factors in the control of CI levels. The potential of the two host species regarding the understanding of CI and its evolution is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard, J.W.O., 2000a. When one is not enough: introgression of mitochondrial DNA in Drosophila. Mol. Biol. Evol. 17: 1126–1130.

    Google Scholar 

  • Ballard, J.W.O., 2000b. Comparative genomics of mitochondrial DNA in Drosophila simulans. J. Mol. Evol. 51: 64–75.

    Google Scholar 

  • Ballard, J.W.O., J. Hatzidakis, T.L. Karr & M. Karr, 1996. Reduced variation in Drosophila simulans mitochondrial DNA. Genetics 144: 1519–1528.

    Google Scholar 

  • Bandi, C., T.J.C. Anderson, C. Genchi & M.L. Blaxter, 1998. Phylogeny of Wolbachia bacteria in filarial nematodes. Proc. R. Soc. Lond. B 265: 2407–2413.

    Google Scholar 

  • Bandi, C., A.J. Trees & N.W. Brattig, 2001. Wolbachia in filerial nematodes: Evolutionnary aspects and implication for the pathogenesis and treatment of filarial diseases. Vet. Parasitol. 98: 215–238.

    Google Scholar 

  • Binnington, K.C. & A.A. Hoffmann, 1989. Wolbachia-like organisms and cytoplasmic incompatibility in Drosophila simulans. J. Invert. Pathol. 54: 344–352.

    Google Scholar 

  • Bourtzis, K., A. Nirgianaki, P. Onyango & C. Savakis, 1994. A prokaryotic dnaA sequence in Drosophila melanogaster: Wolbachia infection and cytoplasmic incompatibility among laboratory strains. Inset. Mol. Biol. 3: 131–142.

    Google Scholar 

  • Bourtzis, K., A. Nirgianaki, G. Markakis & C. Savakis, 1996. Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics 144: 1063–1073.

    Google Scholar 

  • Bourtzis, K., S.L. Dobson, H.R. Braig & S.L. O'Neill, 1998. Rescuing Wolbachia have been overlooked. Nature 391: 852–853.

    Google Scholar 

  • Boyle, L., S.L. O'Neill, H.M. Robertson & T.L. Karr, 1993. Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260: 1796–1799.

    Google Scholar 

  • Braig, H.R., H. Guzman, R.B. Tesh & S.L. O'Neill, 1994. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 367: 453–455.

    Google Scholar 

  • Bressac, C. & F. Rousset, 1993. The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. J. Invert. Pathol. 63: 226–230.

    Google Scholar 

  • Callaini, G., M.G. Riparbelli, R. Giordano & R. Dallai, 1996. Mitotic defects associated with cytoplasmic incompatibility in Drosophila simulans. J. Invert. Pathol. 67: 55–64.

    Google Scholar 

  • Callaini, G., R. Dallai & M.G. Ripardelli, 1997. Wolbachia-induced delay of paternal chromatin condensation does prevent maternal chromosomes from entering anaphase in incompatible crosses in Drosophila simulans. J. Cell Biol. 110: 271–280.

    Google Scholar 

  • Casiraghi, M., T.J.C. Anderson, C. Bandi, C. Bazzochi & C. Genchi, 2001. A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122: 93–103.

    Google Scholar 

  • Charlat, S. & H. Merçot, 2001. Wolbachia, mitochondria and sterility. Trends Ecol. Evol. 16: 431–432.

    Google Scholar 

  • Charlat, S., K. Bourtzis & H. Merçot, 2001. Wolbachia-induced cytoplasmic incompatibility, pp. 621–644 in Symbiosis: mechanisms and model systems, edited by J. Seckbach. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Charlat, S., A. Nirgianaki, K. Bourtzis & H. Merçot, 2002. Evolution of Wolbachia-induced cytoplasmic incompatibility in Drosophila simulans and D. sechellia. Evolution 56: 1735–1742.

    Google Scholar 

  • Charlat, S., P. Bonnavion & H. Merçot, 2003. Wolbachia segregation dynamics and levels of cytoplasmic incompatibility in Drosophila sechellia. Heredity 90: 157–161.

    Google Scholar 

  • Charlat, S., L. Le Chat & H. Merçot, 2003. Characterization of non-cytoplasmic incompatibility inducing Wolbachia in two continental African populations of Drosophila simulans. Heredity 90: 49–55.

    Google Scholar 

  • Clancy, D. & A.A Hoffmann, 1997. Behavior of Wolbachia endosymbionts from Drosophila simulans in Drosophila serrata, a novel host. Am. Nat. 149: 975–988.

    Google Scholar 

  • Dobson, S.L., K. Bourtzis, H.R. Braig, B.F. Jones, W. Zhou, F. Rousset & S.L. O'Neill, 1999. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem. Mol. Biol. 29: 153–160.

    Google Scholar 

  • Erickson, J. & A.B. Acton, 1969. Spermatocyte granules in Drosophila melanogaster. Can. J. Genet. Cytol. 11: 153–168.

    Google Scholar 

  • Ghelelovitch, S., 1952. Sur le déterminisme génétique de la sterilité dans le croisement entre differentes souches de Culex autogenicus Roubaud. C. R. Acad. Sci. Paris 24: 2386–2388.

    Google Scholar 

  • Giordano, R., S.L. O'Neill & H.M. Robertson, 1995. Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana. Genetics 140: 1307–1317.

    Google Scholar 

  • Hertig, M., 1936. The rickettsia Wolbachia pipientis (gen. et sp. n.) and associated inclusions of the mosquitos, Culex pipiens. Parasitology 28: 453–486.

    Google Scholar 

  • Hertig, M. & S.B. Wolbach, 1924. Studies on rickettsia-like microorganisms in insects. J. Med. Res. 44: 329–374.

    Google Scholar 

  • Hey, J. & R.M. Kliman, 1993. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol. Biol. Evol. 10: 804–822.

    Google Scholar 

  • Hoffmann, A.A., 1988. Partial cytoplasmic incompatibility between two australian populations of Drosophila melanogaster. Entomol. Exp. Appl. 48: 61–67.

    Google Scholar 

  • Hoffmann, A.A. & M. Turelli, 1988. Unidirectional incompatibility in Drosophila simulans: Inheritance, geographic variation and fitness effects. Genetics 119: 435–444.

    Google Scholar 

  • Hoffmann, A.A. & M. Turelli, 1997. Cytoplasmic incompatibility in insects, pp. 42–80 in Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, edited by S.L. O'Neill, A.A. Hoffmann and J.H. Werren. Oxford University Press, Oxford.

    Google Scholar 

  • Hoffmann, A.A., M. Turelli & G.M. Simmons, 1986. Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40: 692–701.

    Google Scholar 

  • Hoffmann, A.A., M. Turelli & L.G. Harshman, 1990. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126: 933–948.

    Google Scholar 

  • Hoffmann, A.A., D.J. Clancy & E. Merton, 1994. Cytoplasmic incompatibility in australian populations of Drosophila melanogaster. Genetics 136: 993–999.

    Google Scholar 

  • Hoffmann, A.A., D.J. Clancy & J. Ducan, 1996. Naturally occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibilty. Heredity 76: 1–8.

    Google Scholar 

  • Hoffmann, A.A., M. Hercus & H. Dagher, 1998. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in populations of Drosophila melanogaster. Genetics 148: 221–231.

    Google Scholar 

  • Holden, P.R., P. Jones & J.F.Y. Brookfield, 1993. Evidence for a Wolbachia symbiont in Drosophila melanogaster. Genet. Res. Camb. 62: 23–29.

    Google Scholar 

  • Hurst, G.D. & F.M. Jiggins, 2000. Male-killing bacteria in insects: mechanisms, incidence and implications. Emerging Infect. Dis. 6: 329–336.

    Google Scholar 

  • James, A.C. & J.W.O. Ballard, 2000. The expression of cytoplasmic incompatibility and its impact on population frequencies and the distribution of Wolbachia strains in Drosophila simulans. Evolution 54: 1661–1672.

    Google Scholar 

  • James, A.C., M.D. Dean, M.E. McMahon & J.W.O. Ballard, 2002. Dynamics of double and single Wolbachia infections in Drosophila simulans from New Caledonia. Heredity 88: 182–189.

    Google Scholar 

  • King, R.C., 1970. Ovarian Development in Drosophila melanogaster. Academic Press, New York, 227 pp.

    Google Scholar 

  • King, R.C. & R.P. Mills, 1962. Oogenesis in adult Drosophila melanogaster. XI Studies of some organelles of the nutrient stream in egg chambers of D. melanogaster and D. willistoni. Growth 21: 235–253.

    Google Scholar 

  • Kose, H. & T.L. Karr, 1995. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Mech. Dev. 51: 275–288.

    Google Scholar 

  • Lachaise, D., M. Harry, M. Solignac, F. Lemeunier, V. Bénassi & M-L. Carriou. 2000. Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from Sao Tomé. Proc. R. Soc. Lond. B 267: 1487–1495.

    Google Scholar 

  • Lassy, C.W. & T.L. Karr, 1996. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech. Dev. 57: 47–58.

    Google Scholar 

  • Lo, N., M. Casiraghi, E. Salati, C. Bazzocchi & C. Bandi, 2002. How many Wolbachia supergroups exist? Mol. Biol. Evol. 19: 341–346.

    Google Scholar 

  • Merçot, H. & D. Poinsot, 1998a. Wolbachia transmission in a naturally bi-infected Drosophila simulans strain from New Caledonia. Entomol. Exp. Appl. 86: 97–103.

    Google Scholar 

  • Merçot, H. & D. Poinsot, 1998b. Rescuing Wolbachia have been overlooked and discovered on Mount Kilimanjaro. Nature 391: 853.

    Google Scholar 

  • Merçot, H., B. Llorente, M. Jacques, A. Atlan & C. Montchamp-Moreau, 1995. Variability within the Seychelles cytoplasmic incompatibility system in Drosophila simulans. Genetics 141: 1015–1023.

    Google Scholar 

  • Min, K.T. & S. Benzer, 1997. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc. Natl. Acad. Sci. USA 94: 10792–10796.

    Google Scholar 

  • Montchamp-Moreau, C., J-F. Ferveur & M. Jacques, 1991. Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans. Genetics 129: 399–407.

    Google Scholar 

  • Nigro, L., 1991. The effect of heteroplasmy on cytoplasmic incompatibility in transplasmic lines of Drosophila simulans showing a complete replacement of the mitochondrial DNA. Heredity 66: 41–45.

    Google Scholar 

  • Olsen, K., K.T. Reynolds & A.A. Hoffmann, 2001. A field cage test of the effects of the endosymbiont Wolbachia on Drosophila melanogaster. Heredity 86: 731–737.

    Google Scholar 

  • O'Neill, S.L. & T.L. Karr, 1990. Bi-directional incompatibility between conspecific populations of Drosophila simulans. Nature 348: 178–180.

    Google Scholar 

  • O'Neill, S.L., R. Giordano, A.M.E. Colbert, T.L. Karr & H.M. Robertson, 1992. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. USA 89: 2699–2702.

    Google Scholar 

  • O'Neill, S.L., A.A. Hoffmann & J.H. Werren (eds), 1997. Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford University Press, Oxford, 226 pp.

    Google Scholar 

  • Peacock, W.J. & J. Erickson, 1964. An indicator of polarity in the spermatocyte? Drosophila Inform. Serv. 39: 107–108.

    Google Scholar 

  • Poinsot, D. & H. Merçot, 1999. Wolbachia can rescue from cytoplasmic incompatibility while being unable to induce it, pp. 221-234 in From Symbiosis to Eukaryotism-ENDOCYTOBIOLOGY VII, edited by E. Wagner et al. Universities of Geneva and Freiburg im Breisgau.

  • Poinsot, D. & H. Merçot, 2001. Wolbachia injection from usual to naïve host in Drosophila simulans (Diptera: Drosophilidae). Eur. J. Entomol. 98: 25–30.

    Google Scholar 

  • Poinsot, D., K. Bourtzis, G. Markakis, C. Savakis & H. Merçot, 1998. Injection of a Wolbachia from Drosophila melanogaster into D. simulans: host effect and cytoplasmic incompatibility relationships. Genetics 150: 227–237.

    Google Scholar 

  • Poinsot, D., M. Montchamp-Moreau & H. Merçot, 2000. Wolbachia segregation rate in Drosophila simulans bi-infected cytoplasmic lineages. Heredity 85: 191–198.

    Google Scholar 

  • Poinsot, D., S. Charlat & H. Merçot, 2003. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confrounting the models to the facts. BioEssays 25: 259–265.

    Google Scholar 

  • Reynolds, K.T. & A.A. Hoffmann, 2002. Male age, host effects and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia. Genet. Res. Camb. 80: 79–87.

    Google Scholar 

  • Riegler, M., S. Charlat, C. Stauffer & H. Merçot, 2003. Wolbachia transfer from a true fruit fly into the real fruit fly: investigating the outcomes of host/symbiont co-evolution (submitted).

  • Roux, V. & D. Raoult, 1995. Phylogenetic analysis of the genus Rickettsia by 16S rDNA sequencing. Res. Microbiol. 146: 385–396.

    Google Scholar 

  • Rousset, F., 1993. Les facteurs déterminant la distribution des Wolbachia, bactéries endosymbiotiques des arthropodes. Thèse de Doctorat de l'Université Paris Sud Orsay, 114 pp.

  • Rousset, F. & E. de Stordeur, 1994. Properties of Drosophila simulans strains experimentally infected by different clones of the bacterium Wolbachia. Heredity 71: 325–331.

    Google Scholar 

  • Rousset, F. & M. Solignac, 1995. Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proc. Natl. Acad. Sci. USA 92: 6389–6393.

    Google Scholar 

  • Rousset, F., D. Vautrin & M. Solignac, 1992. Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans and variability in relation with host mitochondrial types. Proc. R. Soc. Lond. B 247: 163–168.

    Google Scholar 

  • Rousset, F., H.R. Braig & S.L. O'Neill, 1999. A stable triple Wolbachia infection in Drosophila with nearly additive incompatibility effects. Heredity 82: 620–627.

    Google Scholar 

  • Solignac, M. & M. Monnerot, 1986. Race formation, speciation, and introgression within Drosophila simulans, D. mauritiana, and D. sechellia inferred from mitochondrial DNA analysis. Evolution 40: 531–539.

    Google Scholar 

  • Solignac, M., D. Vautrin & F. Rousset, 1994. Widespread occurrence of the proteobacteria Wolbachia and partial cytoplasmic incompatibility in Drosophila melanogaster. C. R. Acad. Sci. Paris 317: 461–470.

    Google Scholar 

  • Stouthamer, R., J.A. Breeuwer & G.D. Hurst, 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Ann. Rev. Microbiol. 53: 71–102.

    Google Scholar 

  • Szollosi, D. & A. Debec, 1980. Presence of Rickettsias in haploid Drosophila melanogaster cell lines. Biol. Cell. 38: 129–134.

    Google Scholar 

  • Tram, U. & W. Sullivan, 2002. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296: 1124–1126.

    Google Scholar 

  • Turelli, M., 1994. Evolution of incompatibility-inducing microbes and their hosts. Evolution 48: 1500–1513.

    Google Scholar 

  • Turelli, M. & A.A. Hoffmann, 1991. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353: 440–442.

    Google Scholar 

  • Turelli, M. & A.A. Hoffmann, 1995. Cytoplasmic incompatibility in Drosophila simulans: Dynamics and parameter estimates from natural populations. Genetics 140: 1319–1338.

    Google Scholar 

  • Turelli, M., A.A. Hoffmann & S.W. McKechnie, 1992. Dynamics of cytoplasmic incompatibility and mtDNA variation in Drosophila simulans populations. Genetics 132: 713–723.

    Google Scholar 

  • Ullmann, S.L., 1965. Epsilon granules in Drosophila pole cells and oocytes. J. Embryol. Exptl. Morphol. 13: 73–81.

    Google Scholar 

  • Van Meer, M.M.M. & R. Stouthamer, 1999. Cross-order transfer of Wolbachia from Muscidiforax uniraptor (Hymenoptera: Pteromaldae) to Drosophila simulans (Diptera: Drosophilidae). Heredity 82: 163–169.

    Google Scholar 

  • Vandekerckhove, T.T.M., S. Watteyne, A. Willems, J.G. Swing, J. Mertens & M. Gillis, 1999. Phylogenetic analysis of the 16S rRNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda: Collembola) and its implications for wolbachial taxonomy. FEMS Microbiol. Lett. 180: 279–286.

    Google Scholar 

  • Weeks, A.R., K.T. Reynolds & A.A. Hoffmann, 2002. Wolbachia dynamics and host effects: What has (and has not) been demonstrated? Trends Ecol. Evol. 17: 257–262.

    Google Scholar 

  • Werren, J.H., 1997. Biology of Wolbachia. Annu. Rev. Entomol. 42: 587–609.

    Google Scholar 

  • Werren, J.H., W. Zhang & L.R. Guo., 1995. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc. R. Soc. Lond. B 261: 55–63.

    Google Scholar 

  • Wolstenholme, D.R., 1965. A DNA and RNA-containing cytoplasmic body in Drosophila melanogaster and its relation to flies. Genetics 52: 949–975.

    Google Scholar 

  • Yanders, A.F., J.G. Brewen, W.J. Peackock & D.J. Goodchild, 1968. Meiotic drive and visible polarity in Drosophila spermatocytes. Genetics 59: 245–253.

    Google Scholar 

  • Yen, J.H. & A.R. Barr, 1971. New hypothesis on the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232: 657–658.

    Google Scholar 

  • Yen, J.H. & A.R. Barr, 1973. The etiological agent of cytoplasmic incompatibility in Culex pipiens. J. Invert. Pathol. 22: 242–250.

    Google Scholar 

  • Zhou, W.G., F. Rousset & S.L. O'Neill, 1998. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc. R. Soc. Lond. B 265: 509–515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merçot, H., Charlat, S. Wolbachia Infections in Drosophila Melanogaster and D. Simulans: Polymorphism and Levels of Cytoplasmic Incompatibility. Genetica 120, 51–59 (2004). https://doi.org/10.1023/B:GENE.0000017629.31383.8f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000017629.31383.8f

Navigation