Skip to main content
Log in

Mean-Field Behavior for the Survival Probability and the Percolation Point-to-Surface Connectivity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the critical survival probability (up to timet) for oriented percolation and the contact process, and the point-to-surface (of the ball of radiust) connectivity for critical percolation. Let θt denote both quantities. We prove in a unified fashion that, if θt exhibits a power law and both the two-point function and its certain restricted version exhibit the same mean-field behavior, then θt=t-1 for the time-oriented models with d > 4 and θt=t-2 for percolation with d > 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Aizenman, Geometric analysis of 4 fields and Ising models,Commun. Math. Phys. 86:1–48 (1982).

    Google Scholar 

  2. M. Aizenman and C. M. Newman, Tree graph inequalities and critical behavior in percolation models,J. Statist. Phys. 36:107–143 (1984).

    Google Scholar 

  3. D. J. Barsky and M. Aizenman, Percolation critical exponents under the triangle condition,Ann. Probab. 19:1520–1536 (1991).

    Google Scholar 

  4. D. J. Barsky and C. C. Wu, Critical exponents for the contact process under the triangle condition,J. Statist. Phys. 91:95–124 (1998).

    Google Scholar 

  5. C. Bezuidenhout and G. Grimmett, The critical contact process dies out,Ann. Probab. 18:1462–1482 (1990).

    Google Scholar 

  6. C. Bezuidenhout and G. Grimmett, Exponential decay for subcritical contact and percolation processes,Ann. Probab. 19:984–1009 (1991).

    Google Scholar 

  7. J. T. Chayes and L. Chayes, On the upper critical dimension of Bernoulli percolation,Commun. Math. Phys. 113:27–48 (1987).

    Google Scholar 

  8. G. Grimmett,Percolation. Springer, Berlin (1999).

    Google Scholar 

  9. T. Hara, Critical two-point functions for nearest-neighbour high-dimensional self-avoiding walk and percolation,Unpublished manuscript.

  10. T. Hara, R. van der Hofstad, and G. Slade, Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models,Ann. Probab. 31:349–408 (2003).

    Google Scholar 

  11. T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions,Commun. Math. Phys. 128:333–391 (1990).

    Google Scholar 

  12. T. Hara and G. Slade, Mean-field behaviour and the lace expansion,Probability and Phase Transition(<nt>ed.</nt> G. R. Grimmett). Kluwer, Dordrecht, pp. 87–122 (1994).

    Google Scholar 

  13. T. Hara and G. Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents,J. Statist. Phys. 99:1075–1168 (2000).

    Google Scholar 

  14. R. van der Hofstad, F. den Hollander, and G. Slade, Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions,Commun. Math. Phys. 231:435–461 (2002).

    Google Scholar 

  15. R. van der Hofstad, F. den Hollander, and G. Slade, The survival probability for critical spread-out oriented percolation above 4+1 dimensions. I. Induction,In preparation.

  16. R. van der Hofstad, F. den Hollander, and G. Slade, The survival probability for critical spread-out oriented percolation above 4+1 dimensions. II. Expansion,In preparation.

  17. R. van der Hofstad and A. Sakai, Gaussian scaling limit for the critical spread-out contact process above the upper critical dimension,Preprint.

  18. R. van der Hofstad and A. Sakai, Critical points for spread-out self-avoiding walk, percolation and the contact process above the upper critical dimensions,Preprint.

  19. R. van der Hofstad and G. Slade, A generalised inductive approach to the lace expansion,Probab. Theory Rel. Fields 122:389–430 (2002).

    Google Scholar 

  20. R. van der Hofstad and G. Slade, Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions.Ann. Inst. H. Poincaré Probab. Statist. 39:413–485 (2003).

    Google Scholar 

  21. G. F. Lawler, O. Schramm and W. Werner, One-arm exponent for critical 2D percolation,Electronic J. Probab. 7:2 (2002).

    Google Scholar 

  22. B. G. Nguyen and W.-S. Yang, Triangle condition for oriented percolation in high dimensions,Ann. Probab. 21:1809–1844 (1993).

    Google Scholar 

  23. B. G. Nguyen and W.-S. Yang, Gaussian limit for critical oriented percolation in high dimensions,J. Statist. Phys. 78:841–876 (1995).

    Google Scholar 

  24. A. Sakai, Mean-field critical behavior for the contact process,J. Statist. Phys. 104:111–143 (2001).

    Google Scholar 

  25. A. Sakai, Hyperscaling inequalities for the contact process and oriented percolation,J. Statist. Phys. 106:201–211 (2002).

    Google Scholar 

  26. A. Sakai, Mean-field behavior of the finite-volume single-spin expectation for Ising ferromagnets,In preparation.

  27. H. Tasaki, Hyperscaling inequalities for percolation,Commun. Math. Phys. 113:49–65 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, A. Mean-Field Behavior for the Survival Probability and the Percolation Point-to-Surface Connectivity. Journal of Statistical Physics 117, 111–130 (2004). https://doi.org/10.1023/B:JOSS.0000044061.83860.62

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000044061.83860.62

Navigation