Skip to main content
Log in

Is the Two-Dimensional One-Component Plasma Exactly Solvable?

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The model under consideration is the two-dimensional (2D) one-component plasma of point-like charged particles in a uniform neutralizing background, interacting through the logarithmic Coulomb interaction. Classical equilibrium statistical mechanics is studied by non-traditional means. The question of the potential integrability (exact solvability) of the plasma is investigated, first at arbitrary coupling constant Γ via an equivalent 2D Euclidean-field theory, and then at the specific values of Γ = 2*integer via an equivalent 1D fermionic model. The answer to the question in the title is that there is strong evidence for the model being not exactly solvable at arbitrary Γ but becoming exactly solvable at Γ = 2*integer. As a by-product of the developed formalism, the gauge invariance of the plasma is proven at the free-fermion point Γ = 2; the related mathematical peculiarity is the exact inversion of a class of infinite-dimensional matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ph. A. Martin,Rev. Mod. Phys. 60:1075 (1988)

    Google Scholar 

  2. L. Blum, C. Gruber, J. L. Lebowitz, and Ph. A. Martin,Phys. Rev. Lett. 48:1769 (1982).

    Google Scholar 

  3. B. Jancovici,J. Phys.: Condens. Matter 14:9121 (2002), and references quoted there.

    Google Scholar 

  4. A. Torres and G. Téllez,J. Phys. A 37:2121 (2004).

    Google Scholar 

  5. B. Jancovici, <nt>in</nt>Inhomogeneous Fluids, D. Henderson, <nt>ed.</nt> (Dekker, New York, 1992), pp. 201–237.

    Google Scholar 

  6. P. J. Forrester,Phys. Rep. 301:235 (1998).

    Google Scholar 

  7. A. Salzberg and S. Prager,J. Chem. Phys. 38:2587 (1963).

    Google Scholar 

  8. L. Šamaj,J. Phys. A 36:5913 (2003).

    Google Scholar 

  9. J. Ginibre,J. Math. Phys. 6:440 (1965).

    Google Scholar 

  10. R. E. Prange and S. M. Girvin,The Quantum Hall Effect (Springer, New York, 1987).

    Google Scholar 

  11. P. Di Francesco, M. Gaudin, C. Itzykson, and F. Lesage,Int. J. Mod. Phys. A 9:4257 (1994).

    Google Scholar 

  12. Ph. Choquard and J. Clérouin,Phys. Rev. Lett. 50:2086 (1983).

    Google Scholar 

  13. M. A. Moore and A. Pérez-Garrido,Phys. Rev. Lett. 82:4078 (1999).

    Google Scholar 

  14. B. Jancovici,Phys. Rev. Lett. 46:386 (1981).

    Google Scholar 

  15. P. Vieillefosse and J. P. Hansen,Phys. Rev. A 12:1106 (1975).

    Google Scholar 

  16. P. Kalinay, P. Markoš, L. Šamaj, and I. Travěnec,J. Stat. Phys. 98:639 (2000).

    Google Scholar 

  17. P. J. Forrester,J. Stat. Phys. 63:491 (1991).

    Google Scholar 

  18. B. Jancovici, G. Manificat,and C. Pisani,J. Stat. Phys. 76:307 (1994).

    Google Scholar 

  19. B. Jancovici and E. Trizac,Physica A 284:241 (2000).

    Google Scholar 

  20. G. V. Dunne,Int. J. Mod. Phys. B 7:4783 (1994).

    Google Scholar 

  21. T. Scharf, J. Y. Thibon, and B. G. Wybourne,J. Phys. A 27:4211 (1994).

    Google Scholar 

  22. L. Šamaj, J. K. Percus, and M. Kolesík,Phys. Rev. E 49:5623 (1994).

    Google Scholar 

  23. G. Téllez and P. J. Forrester,J. Stat. Phys. 97:489 (1999).

    Google Scholar 

  24. L. Šamaj and J. K. Percus,J. Stat. Phys. 80:811 (1995).

    Google Scholar 

  25. L. Šamaj, P. Kalinay, and I. Travěnec,J. Phys. A 31:4149 (1998).

    Google Scholar 

  26. S. Ghoshal and A. B. Zamolodchikov,Int. J. Mod. Phys. A 9:3841 (1994).

    Google Scholar 

  27. F. Cornu, B. Jancovici, and L. Blum,J. Stat. Phys. 50:1221 (1988).

    Google Scholar 

  28. I. S. Gradshteyn and I. M. Ryzhik,Tables of Integrals,Series, and Products, 5th edn. (Academic Press, London, 1994).

    Google Scholar 

  29. C. Deutsch and M. Lavaud,Phys. Rev. A 9:2598 (1974).

    Google Scholar 

  30. D. C. Brydges and Ph. A. Martin,J. Stat. Phys. 96:1163 (1999).

    Google Scholar 

  31. E. H. Lieb and H. Narnhofer,J. Stat. Phys. 12:291 (1975);<nt>ibid</nt>14:465 (1976).

    Google Scholar 

  32. R. Fantoni, B. Jancovici, and G. Téllez,J. Stat. Phys. 112:27 (2003).

    Google Scholar 

  33. P. Minnhagen,Rev. Mod. Phys. 59:1001 (1987).

    Google Scholar 

  34. N. V. Brilliantov,Contrib. Plasma Phys. 38:489 (1998).

    Google Scholar 

  35. J. Zinn-Justin,Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1999), 3rd edn.

    Google Scholar 

  36. R. K. Dodd and R. K. Bullough,Proc. R. Soc. London A 352:481 (1977).

    Google Scholar 

  37. L. Šamaj,J. Stat. Phys. 111:261 (2003).

    Google Scholar 

  38. P. J. Forrester and B. Jancovici,Int. J. Mod. Phys. A 5:941 (1996).

    Google Scholar 

  39. B. Jancovici,J. Stat. Phys. 28:43 (1982).

    Google Scholar 

  40. F. A. Berezin,The method of Second Quantization (Academic Press, New York, 1966).

    Google Scholar 

  41. M. L. Mehta,Random Matrices, 2nd edn. (Academic, London, 1990).

    Google Scholar 

  42. L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media, 2nd edn. (Pergamon, Oxford,1963), Chapter I.

    Google Scholar 

  43. Ph. Choquard, B. Piller, R. Rentsch, and P. Vieillefosse,J. Stat. Phys. 55:1185 (1989).

    Google Scholar 

  44. B. Jancovici and L. Šamaj,J. Stat. Phys. 114:1211 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šamaj, L. Is the Two-Dimensional One-Component Plasma Exactly Solvable?. Journal of Statistical Physics 117, 131–158 (2004). https://doi.org/10.1023/B:JOSS.0000044056.19438.2c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000044056.19438.2c

Navigation