Skip to main content
Log in

Electromagnetic Field Theory Without Divergence Problems 2. A Least Invasively Quantized Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Classical electrodynamics based on the Maxwell–Born–Infeld field equations coupled with a Hamilton–Jacobi law of point charge motion is partially quantized. The Hamilton–Jacobi phase function is supplemented by a dynamical amplitude field on configuration space. Both together combine into a single complex wave function satisfying a relativistic Klein–Gordon equation that is self-consistently coupled to the evolution equations for the point charges and the electromagnetic fields. Radiation-free stationary states exist. The hydrogen spectrum is discussed in some detail. Upper bounds for Born's “aether constant” are obtained. In the limit of small velocities of and negligible radiation from the point charges, the model reduces to Schrödinger's equation with Coulomb Hamiltonian, coupled with the de Broglie–Bohm guiding equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Commun. Math. Phys. 94:155–175 (1984).

    Google Scholar 

  2. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics(Cambridge University Press, Cambridge, UK, 1987).

    Google Scholar 

  3. K. Berndl, D. Dürr, S. Goldstein, G. Peruzzi, and N. Zanghì, On the global existence of Bohmian mechanics, Commun. Math. Phys. 173:647–673 (1995).

    Google Scholar 

  4. K. Berndl, D. Dürr, S. Goldstein, and N. Zangh$#x00EC;, Nonlocality, Lorentz invariance, and Bohmian quantum theory, Phys. Rev. A 53:2062–2073 (1996).

    Google Scholar 

  5. I. Bialynicki-Birula, Nonlinear electrodynamics: Variations on a theme by Born and Infeld, in Quantum Theory of Particles and Fields, Special Volume in Honor of Jan Lopusza$#x0144;ski, B. Jancewicz and J. Lukierski, eds. (World Scientific, Singapore, 1983), pp. 31–48.

    Google Scholar 

  6. D. Bohm, A tentative interpretation of the quantum theory in terms of hidden variables. Part I, Phys. Rev. 85:166–179 (1952); Part II, ibid. 85:180-193 (1952).

    Google Scholar 

  7. G. Boillat, Nonlinear electrodynamics: Lagrangians and equations of motion, J. Math. Phys. 11:941–951 (1970).

    Google Scholar 

  8. M. Born, Zur Quantenmechanik der Stossvorgänge, Z. Phys. 37:863–867 (1926a); Quantenmechanik der Stossvorgänge, Z. Phys. 38:803-827 (1926b).

    Google Scholar 

  9. M. Born, Modified field equations with a finite radius of the electron, Nature 132:282 (1933).

    Google Scholar 

  10. M. Born, On the quantum theory of the electromagnetic field, Proc. Roy. Soc. London Ser. A 143:410–437 (1934).

    Google Scholar 

  11. M. Born, Théorie non-linéare du champ électromagnétique, Ann. Inst. H. Poincaré 7:155–265 (1937).

    Google Scholar 

  12. M. Born, Atomic Physics, 8th rev. ed. (Blackie & Son, Glasgow, 1969).

    Google Scholar 

  13. M. Born and L. Infeld, Electromagnetic mass, Nature 132:970 (1933).

    Google Scholar 

  14. M. Born and L. Infeld, Foundation of the new field theory, Nature 132:1004 (1933); Proc. Roy. Soc. London Ser. A 144:425-451 (1934).

    Google Scholar 

  15. M. Born and L. Infeld, On the quantization of the new field equations. Part I, Proc. Roy. Soc. London Ser. A 147:522–546 (1934); Part II, Proc. Roy. Soc. London Ser. A 150: 141-166 (1935).

    Google Scholar 

  16. L. V. de Broglie, La structure de la matie`re et du rayonnement et la mécanique ondulatoire, Comptes Rendus 184:273–274 (1927); La mécanique ondulatoire et la structure atomique de la matie`re et du rayonnement, J. Phys. et Rad. 8:225-241 (1927); see also Reports on the 1927 Solvay Congress(Gauthier-Villars, Paris, 1927).

    Google Scholar 

  17. L. V. de Broglie, An Introduction to the Study of Wave Mechanics(E. P. Dutton and Co., New York, 1930).

    Google Scholar 

  18. L. V. de Broglie, La physique quantique restera t-elle indeterministique?(Gauthier-Villars, Paris, 1953).

    Google Scholar 

  19. P. A. M. Dirac, A reformulation of the Born-Infeld electrodynamics, Proc. Roy. Soc. London Ser. A 257:32–43 (1960).

    Google Scholar 

  20. D. Dürr, S. Goldstein, and N. Zangh$#x00EC;, Quantum equilibrium and the origin of absolute uncertainty, J. Stat. Phys. 67:843–907 (1992).

    Google Scholar 

  21. D. Dürr, S. Goldstein, K. Münch-Berndl, and N. Zangh$#x00EC;, Hypersurface Bohm-Dirac models, Phys. Rev. A 60:2729–2736 (1999).

    Google Scholar 

  22. D. Dürr, S. Goldstein, J. Taylor, and N. Zangh$#x00EC;, Bosons, Fermions, and the Natural Configuration Space of Identical Particles, preprint (Rutgers University, March 2003).

  23. J. Glimm and A. Jaffe, Quantum Physics, 2nd ed. (Springer, New York, 1980).

    Google Scholar 

  24. S. Goldstein, Quantum theory without observers, Part I, Phys. Today(March 1998); Part II, ibid.(April 1998).

  25. S. Goldstein and R. Tumulka, Opposite arrows of time can reconcile relativity and nonlocality, Class. Quant. Grav. 20:557–564 (2003).

    Google Scholar 

  26. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th. ed. (Academic Press, San Diego, 1980).

    Google Scholar 

  27. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975); 3rd ed. (Wiley, New York, 1999).

    Google Scholar 

  28. S. Keppeler, Semiclassical quantisation rules for the Dirac and Pauli equations, Ann. Phys. (N.Y.) 304:40–71 (2003).

    Google Scholar 

  29. M. K.-H. Kiessling, Electromagnetic field theory without divergence problems. 1. The Born legacy, J. Stat. Phys. 116:1057–1122 (2004).

    Google Scholar 

  30. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation(Freeman, New York, 1973).

    Google Scholar 

  31. J. Plebań ski, Lecture Notes on Nonlinear Electrodynamics(NORDITA, Copenhagen, 1970) (quoted in ref. 5).

    Google Scholar 

  32. M. H. L. Pryce, On a uniqueness theorem, Proc. Cambridge Phil. Soc. 31:625–628 (1935).

    Google Scholar 

  33. M. H. L. Pryce, Commuting coordinates in the new field theory, Proc. Roy. Soc. London Ser. A 150:166–172 (1935).

    Google Scholar 

  34. M. H. L. Pryce, On the new field theory, Proc. Roy. Soc. London Ser. A 155:597–613 (1936).

    Google Scholar 

  35. M. H. L. Pryce, On the new field theory. II. Quantum theory of field and charges, Proc. Roy. Soc. London Ser. A 159:355–382 (1937).

    Google Scholar 

  36. M. Reed and B. Simon, Analysis of operators, in Methods of Modern Mathematical Physics IV(Academic Press, Orlando, 1978).

    Google Scholar 

  37. E. Schrödinger, Contribution to Born's new theory of the electromagnetic field, Proc. Roy. Soc. London Ser. A 150:465–477 (1935).

    Google Scholar 

  38. E. Schrödinger, Non-linear optics, Proc. Roy. Irish Acad. Sect. A 47:77–117 (1942).

    Google Scholar 

  39. E. Schrödinger, Dynamics and scattering-power of Born's electron, Proc. Roy. Irish Acad. Sect. A 48:91–122 (1942).

    Google Scholar 

  40. E. Schrödinger, A new exact solution in non-linear optics (two-wave system), Proc. Roy. Irish Acad. Sect. A 49:59–66 (1943).

    Google Scholar 

  41. R. F. Streater and A. Wightman, PCT, Spin and Statistics, and All That(Princeton University Press, Princeton, 1964).

    Google Scholar 

  42. W. E. Thirring, Classical Mathematical Physics: Dynamical Systems and Field Theory, 3rd ed. (Springer-Verlag, New York, 1997).

    Google Scholar 

  43. R. Tumulka, Private communications (2004).

  44. S. Weinberg, The Quantum Theory of Fields. Vol. I, Foundations(Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  45. J. A. Wheeler and W. H. Zurek (eds.), Quantum Theory and Measurement(Princeton University Press, Princeton, 1982).

    Google Scholar 

  46. A. S. Wightman, Some comments on the quantum theory of measurement, in Probabilistic Methods in Mathematical Physics, Proceedings of the International Workshop held in Siena, May 6-11, 1991, F. Guerra, M. I. Loffredo, and C. Marchioro, eds. (World Scientific, River Edge, NJ, 1992), pp. 411–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiessling, M.KH. Electromagnetic Field Theory Without Divergence Problems 2. A Least Invasively Quantized Theory. Journal of Statistical Physics 116, 1123–1159 (2004). https://doi.org/10.1023/B:JOSS.0000037251.24558.5c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037251.24558.5c

Navigation