Skip to main content
Log in

Quantum mechanics without quanta: 2. The nature of the electron

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

In this paper, I argue that we can avoid the paradoxes connected with the wave-particle duality if we consider some classical wave field—“an electron wave”—instead of electrons as the particles and consider the wave equations (Dirac, Klein–Gordon, Pauli and Schrödinger) as the field equations similar to Maxwell equations for the electromagnetic field. It is shown that such an electron field must have an electric charge, an intrinsic angular momentum and an intrinsic magnetic moment continuously distributed in the space. In this case, no paradoxes are associated with the infinite electromagnetic energy of the “electron” and its anomalous from the standpoint of the classical electrodynamics gyromagnetic ratio. It is shown that from this perspective, the double-slit experiment, the Born rule, the Heisenberg uncertainty principle and the Compton effect all have a simple explanation within classical field theory. The proposed perspective allows consideration of quantum mechanics not as a theory of particles but as a classical field theory similar to Maxwell electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H.: Demonstration of single-electron build-up of an interference pattern. Am. J. Phys. 57, 117–120 (1989)

    Article  Google Scholar 

  2. Taylor, G.I.: Interference fringes with feeble light. Proc. Camb. Philos. Soc. 15(1), 114–115 (1909)

    Google Scholar 

  3. Dimitrova, T.L., Weis, A.: The wave-particle duality of light: a demonstration experiment. Am. J. Phys. 76(2), 137–142 (2008)

    Article  Google Scholar 

  4. Zurek, W.H.: Environment-assisted invariance, entanglement, and probabilities in quantum physics. Phys Rev Lett 90, 120404 (2003)

  5. Zurek, W.H.: Probabilities from entanglement, Born’s rule \(p_{k} =\left| {\psi _{k} } \right|^{2}\) from envariance. Phys. Rev. A 71, 052105 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Schlosshauer, M., Fine, A.: On Zurek’s derivation of the Born rule. Found. Phys. 35(2), 197–213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Tegmark, M.: The interpretation of quantum mechanics: many worlds or many words? Fortschritte der Physik 46, 855–862 (1998)

    Article  MathSciNet  Google Scholar 

  8. Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1995)

  9. Auletta, G.: Foundations and Interpretation of Quantum Mechanics. World Scientific, Singapore (2000)

  10. Bacciagaluppi, G.: The Modal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (2006)

  11. Bohm, D., Hiley B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, UK (2006)

  12. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42(4), 358 (1970)

    Article  MATH  Google Scholar 

  13. Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58(3), 647 (1986)

    Article  MathSciNet  Google Scholar 

  14. Omnès, R.: Consistent interpretations of quantum mechanics. Rev. Mod. Phys. 64(2), 339 (1992)

    Article  MathSciNet  Google Scholar 

  15. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267 (2005)

    Article  Google Scholar 

  16. Rashkovskiy, S.A.: A rational explanation of wave-particle duality of light. In: SPIE Optical Engineering \(+\) Applications (pp. 88321O–88321O). International Society for Optics and Photonics, UK (2013)

  17. Rashkovskiy, S.A.: Quantum mechanics without quanta: the nature of the wave-particle duality of light. Quantum Stud.: Math. Found. 3, 147–160 (2016). doi:10.1007/s40509-015-0063-5

  18. Rashkovskiy, S.A.: Are there photons in fact? In: Proc. SPIE. 9570, The Nature of Light: What are Photons? vol. VI, p. 95700G (2015). doi:10.1117/12.2185010

  19. Rashkovskiy, S.A.: Semiclassical simulation of the double-slit experiments with single photons. In: Progress of Theoretical and Experimental Physics 2015(12), 123A03 (2015). doi:10.1093/ptep/ptv162

  20. http://www.hitachi.com/rd/portal/highlight/quantum/

  21. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, vol. 2, 4th ed. Butterworth-Heinemann, UK (1975)

  22. Schmutzer, E.: Grundprinzipien der klassischen Mechanik und der klassischen Feldtheorie (kanonischer Apparat). VEB Deutscher Verlag der Wissenschaften, Berlin (1973). (in German)

    MATH  Google Scholar 

  23. Takabayasi, T.: On the hydrodynamical representation of non-relativistic spinor equation. Prog. Theor. Phys. 12(6), 810–812 (1954)

    Article  MathSciNet  Google Scholar 

  24. Takabayasi, T.: The vector representation of spinning particle in the quantum theory, I. Prog. Theor. Phys. 14(4), 283–302 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  25. Takabayasi, T., Vigier, J.-P.: Description of Pauli matter as a continuous assembly of small rotating bodies. Prog. Theor. Phys. 18(6), 573–590 (1957)

    Article  MATH  Google Scholar 

  26. Takabayasi, T.: Relativistic hydrodynamics equivalent to the Dirac equation. Prog. Theor. Phys. 13(2), 222–224 (1955)

    Article  Google Scholar 

  27. Takabayasi, T.: Hydrodynamical description of the Dirac equation. Il Nuovo Cimento 3(2), 233–241 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  28. Takabayasi, T.: Theory of the Dirac Field as a Continuous Assembly of Small Rotating Bodies, Il Nuovo Cimento, vol. VII, No. 1, pp. 118–121 (1958)

  29. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory, vol. 3, 3rd ed. Pergamon Press, Oxford (1977)

  30. Messiah, A.: Quantum Mechanics. Dover Publications Inc., New York (1999)

    MATH  Google Scholar 

  31. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation. Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999)

  32. Dirac, P.A.M.: Relativity Quantum Mechanics with an Application to Compton Scattering. Proc. R. Soc. Lond. A. 111, 405–423 (1926)

  33. Dirac, P.A.M.: The compton effect in wave mechanics. Proc. Cambr. Phil. Soc. 23, 500–507 (1926)

    Article  MATH  Google Scholar 

  34. Der, Gordon W.: Comptoneffekt nach der Schrödingerschen Theorie. Zeit. F. Phys. 40, 117–133 (1926)

    Article  MATH  Google Scholar 

  35. Klein, O., Nishina, Y.: Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z. Phys. 52(11–12), 853–869 (1929)

    Article  MATH  Google Scholar 

  36. Klein, O., Nishina, Y.: On the scattering of radiation by free electrons according to Dirac’s new relativistic quantum dynamics. In: The Oskar Klein Memorial Lectures: 1988–1999, vol. 1, pp. 253-272 (2014)

  37. Schrödinger, E.: Uber den Comptoneffekt. Ann. Physik 82, 257–264 (1927)

    Article  MATH  Google Scholar 

  38. Sommerfeld, A.: Wave-Mechanics: Supplementary Volume to Atomic Structure and Spectral Lines. Dutton, New York (1934)

  39. Mead, C.: Collective Electrodynamics: Quantum Foundations of Electromagnetism. MIT Press, New York (2002)

Download references

Acknowledgments

Funding was provided by Tomsk State University competitiveness improvement program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Rashkovskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashkovskiy, S.A. Quantum mechanics without quanta: 2. The nature of the electron. Quantum Stud.: Math. Found. 4, 29–58 (2017). https://doi.org/10.1007/s40509-016-0085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-016-0085-7

Keywords

Mathematics Subject Classification 

Navigation