Skip to main content
Log in

Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Bohmian mechanics is arguably the most naively obvious embedding imaginable of Schrödinger's equation into a completely coherent physical theory. It describes a world in which particles move in a highly non-Newtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψits configuration is typically random, with probability density ρgiven by |ψ|2, the quantum equilibrium distribution. It also turns out that the entire quantum formalism, operators as observables and all the rest, naturally emerges in Bohmian mechanics from the analysis of “measurements.” This analysis reveals the status of operators as observables in the description of quantum phenomena, and facilitates a clear view of the range of applicability of the usual quantum mechanical formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Aharonov, J. Anandan,and L. Vaidman,Meaning of the wave function, Phys. Rev. A 47:4616–4626 (1993).

    Google Scholar 

  2. D. Z. Albert, Quantum Mechanics and Experience(Harvard University Press, Cambridge, MA,1992).

    Google Scholar 

  3. S. T. Ali and G. G. Emch,Fuzzy observables in quantum mechanics, J. Math. Phys. 15:176–182 (1974).

    Google Scholar 

  4. A. Aspect, J. Dalibard,and G. Roger,Experimental test of Bell's inequalities using timevarying analyzers, Phys. Rev. Lett. 49:1804–1807 (1982).

    Google Scholar 

  5. J. S. Bell,On the Einstein-Podolsky-Rosen paradox, Physics 1:195–200 (1964),reprinted in ref. 75,and in ref. 10.

    Google Scholar 

  6. J. S. Bell,On the problem of hidden variables in quantum mechanics, Rev. Modern Phys. 38:447–452 (1966),reprinted in ref. 75 and in ref. 10.

    Google Scholar 

  7. J. S. Bell,De Broglie-Bohm,delayed-choice double-slit experiment, and density matrix, Internat. J. Quantum Chem.: A Symposium, 14:155–159 (1980),reprinted in ref. 10.

    Google Scholar 

  8. J. S. Bell,Quantum mechanics for cosmologists, in Quantum Gravity 2,C. Isham, R. Penrose,and D. Sciama,eds. (Oxford University Press, New York),pp. 611–637, reprinted in ref. 10.

  9. J. S. Bell,On the impossible pilot wave, Found. Phys. 12:989–999 (1982),reprinted in ref. 10.

    Google Scholar 

  10. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics(Cambridge University Press, Cambridge,1987).

    Google Scholar 

  11. J. S. Bell,Against “measurement, ” Physics World 3:33–40 (1990),also in ref. 63.

    Google Scholar 

  12. I. Bialynicki-Birula,On the wave function of the photon, Acta Phys. Pol. 86:97–116 (1994).

    Google Scholar 

  13. A. Böhm, Quantum Mechanics(Springer-Verlag, New York/Heidelberg/Berlin, 1979).

    Google Scholar 

  14. D. Bohm, Quantum Theory(Prentice-Hall, Englewood Cliffs,N.J.,1951).

    Google Scholar 

  15. D. Bohm,A suggested interpretation of the quantum theory in terms of ''hidden'' variables: Parts I and II, Phys. Rev. 85:166–193 (1952),reprinted in ref. 75.

    Google Scholar 

  16. D. Bohm and B. J Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory(Routledge & Kegan Paul, London,1993).

    Google Scholar 

  17. N. Bohr, Atomic Physics and Human Knowledge(Wiley, New York,1958).

    Google Scholar 

  18. V. B. Braginsky, Y. I. Vorontsov,and K. S. Thorne,Quantum nondemolition measurements, Science 209:547–57 (1980),reprinted in ref. 75.

    Google Scholar 

  19. M. Daumer, D. Dürr, S. Goldstein,and N. Zanghì,On the flux-across-surfaces theorem, Lett. Math. Phys. 38:103–116 (1996).

    Google Scholar 

  20. M. Daumer, D. Dürr, S. Goldstein,and N. Zanghì,On the quantum probability flux through surfaces, J. Stat. Phys. 88:967–977 (1997).

    Google Scholar 

  21. E. B. Davies, Quantum Theory of Open Systems(Academic Press, London/New York/ San Francisco,1976).

    Google Scholar 

  22. C. Dewdney, L. Hardy,and E. J. Squires,How late meaurements of quantum trajectories can fool a detector, Phys. Lett. A 184:6–11 (1993).

    Google Scholar 

  23. P. A. M. Dirac, The Principles of Quantum Mechanics(Oxford University Press, Oxford, 1930).

    Google Scholar 

  24. D. Dürr, W. Fusseder, S. Goldstein,and N. Zanghì,Comment on: Surrealistic Bohm trajectories, Z. f. Naturforsch. 48a:1261–1262 (1993).

    Google Scholar 

  25. D. Dürr, S. Goldstein,and N. Zanghì,Quantum equilibrium and the origin of absolute uncertainty, J. Stat. Phys. 67:843–907 (1992).

    Google Scholar 

  26. D. Dürr, K. Münch-Berndl,and S. Teufel,The flux across surfaces theorem for short range potentials without energy cutoffs, J. Math. Phys. 40:1901–1922 (1999).

    Google Scholar 

  27. D. Dürr, S. Goldstein, S. Teufel,and N. Zanghì,Scattering theory from microscopic first principles, Physica A 279:416–431 (2000).

    Google Scholar 

  28. D. Dürr, S. Goldstein, J. Taylor, R. Tumulka,and N. Zanghì,Bosons, fermions, and the topology of configuration space,in preparation.

  29. D. Dürr, S. Goldstein, R. Tumulka,and N. Zanghì,Quantum Hamiltonians and stochastic jumps,quant-ph/0303056.

  30. D. Dürr, S. Goldstein, R. Tumulka,and N. Zanghì,Trajectories and particle creation and annihilation in quantum field theory, J. Phys. A: Math. Gen. 36:4143–4149 (2003).

    Google Scholar 

  31. D. Dürr, S. Goldstein, R. Tumulka,and N. Zanghì,On the role of density matrices in Bohmian mechanics,in preparation.

  32. A. Einstein, B. Podolsky,and N. Rosen,Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47:777–780 (1935).

    Google Scholar 

  33. E. Englert, M. O. Scully, G. Süssman,and H. Walther,Surrealistic Bohm trajectories, Z. f. Naturforsch. 47a:1175 (1992).

    Google Scholar 

  34. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals(McGraw-Hill, New York,1965).

    Google Scholar 

  35. M. Gell-Mann and J. B. Hartle,Quantum mechanics in the light of quantum cosmology, in Complexity, Entropy, and the Physics of Information,W. Zurek, ed. (Addison-Wesley, Reading,1990),pp. 425–458,also in ref. 52.

    Google Scholar 

  36. G. C. Ghirardi,private communication, unpublished (1981).

  37. G. C. Ghirardi and T. Weber,Quantum mechanics and faster-than-light communication: Methodological considerations, Nuovo Cimento B 78:9 (1983).

    Google Scholar 

  38. G. C. Ghirardi, A. Rimini,and T. Weber,Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34:470–491 (1986).

    Google Scholar 

  39. G. C. Ghirardi and A. Rimini,Old and new ideas in the theory of quantum measurements, in ref. 63.

  40. G. C. Ghirardi, P. Pearle,and A. Rimini,Markov processes in Hilbert space and continous spontaneous localization of system of identical particles, Phys. Rev. A 42:78–89 (1990).

    Google Scholar 

  41. A. M. Gleason,Measures on the closed subspaces of a Hilbert space, J. Math. and Mech. 6:885–893 (1957).

    Google Scholar 

  42. S. Goldstein,Stochastic mechanics and quantum theory, J. Stat. Phys. 47:645–667 (1987).

    Google Scholar 

  43. S. Goldstein,Quantum theory without observers,part one, Physics Today42-46 (March 1998); Part two, Physics Today38–42 (April 1998).

  44. S. Goldstein and D. Page,Linearly positive histories: Probabilities for a robust family of sequences of quantum events, Phys. Rev. Lett. 74:3715–3719 (1995).

    Google Scholar 

  45. D. M. Greenberg, M. Horne, S. Shimony,and A. Zeilenger,Bell's theorem without inequalities, Amer. J. Phys. 58:1131–1143 (1990).

    Google Scholar 

  46. R. B. Griffiths,Consistent histories and the interpretation of quantum mechanics, J. Stat. Phys. 36:219–272 (1984).

    Google Scholar 

  47. G. Grübl and K. Rheinberger,Time of arrival from Bohmian flow, J. Phys. A: Math. Gen. 35:2907–2924 (2002).

    Google Scholar 

  48. L. Hardy,Nonlocality for two particles without inequalities for almost all entangled states, Phys. Rev. Lett. 71:1665 (1993).

    Google Scholar 

  49. W. Heisenberg, Physics and Beyond; Encounters and Conversations(Harper & Row, New York,1971).

    Google Scholar 

  50. A. S. Holevo,Probabilistic and statistical aspects of quantum theory, North-Holland Series in Statistics and Probability,Vol. 1 (North-Holland, Amsterdam/New York/ Oxford,1982).

    Google Scholar 

  51. E. Joos and H. D. Zeh,The emergence of classical properties through interaction with the environment, Z. Physik B 59:223–243 (1985).

    Google Scholar 

  52. S. Kobayashi, H. Ezawa, Y. Murayama,and S. Nomura,eds., Proceedings of the 3rd International Symposium on Quantum Mechanics in the Light of New Technology(Physical Society of Japan,1990).

  53. S. Kochen and E. P. Specker,The problem of hidden variables in quantum mechanics, J. Math. and Mech. 17:59–87 (1967).

    Google Scholar 

  54. K. Kraus,Position observables of the photon,in The Uncertainty Principle and Foundations of Quantum Mechanics,W. C. Price and S. S. Chissick, eds. (Wiley, New York, 1977),pp. 293–320.

    Google Scholar 

  55. K. Kraus,States,effects,and operations, Lectures Notes in Phys. 190(1983).

  56. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory(Pergamon Press, Oxford and New York,1958),translated from the Russian by J. B. Sykes and J. S. Bell.

    Google Scholar 

  57. C. R. Leavens,Transmission,reflection and dwell times within Bohm's causal interpretation of quantum mechanics, Solid State Communications 74:923 (1990).

    Google Scholar 

  58. W. R. McKinnon and C. R. Leavens,Distributions of delay times and transmission times in Bohm's causal interpretation of quantum mechanics, Phys. Rev. A 51:2748–2757 (1995).

    Google Scholar 

  59. C. R. Leavens,Time of arrival in quantum and Bohmian mechanics, Phys. Rev. A 58:840–847 (1998).

    Google Scholar 

  60. A. J. Leggett,Macroscopic quantum systems and the quantum theory of measurement, Progr. Theoret. Phys. (Supplement) 69:80–100 (1980).

    Google Scholar 

  61. G. Lüders,über die Zustandsänderung durch den Messprozess, Ann. Physik 8:322–328 (1951).

    Google Scholar 

  62. D. N. Mermin,Hidden variables and the two theorems of John Bell, Rev. Modern Phys. 65:803–815 (1993).

    Google Scholar 

  63. A. I. Miller,ed., Sixty-Two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics(Plenum Press, New York,1990).

    Google Scholar 

  64. E. Nelson, Quantum Fluctuations(Princeton University Press, Princeton,N.J.,1985).

    Google Scholar 

  65. R. Omnes,Logical reformulation of quantum mechanics, J. Stat. Phys. 53:893–932 (1988).

    Google Scholar 

  66. W. Pauli,in Encyclopedia of Physics,S. Flügge, ed.,Vol. 60 (Springer, Berlin/ Heidelberg/New York,1958).

    Google Scholar 

  67. A. Peres,Two simple proofs of the Kochen-Specker theorem, J. Phys. A 24:175–178 (1991).

    Google Scholar 

  68. E. Prugovecki, Quantum Mechanics in Hilbert Space(Academic Press, New York and London,1971).

    Google Scholar 

  69. M. Reed and B. Simon, Methods of Modern Mathematical Physics II(Academic Press, New York,1975).

    Google Scholar 

  70. M. Reed and B. Simon, Methods of Modern Mathematical Physics I. Functional Analysis, revised and enlarged edition (Academic Press, New York,1980).

    Google Scholar 

  71. F. Riesz and B. Sz.-Nagy, Functional Analysis(F. Ungar, New York,1955).

    Google Scholar 

  72. E. Schrödinger,Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23:807–812 (1935),English translation by J. D. Trimmer, The Present Situation in Quantum Mechanics: A Translation of Schrödinger's ''Cat Paradox'' Paper,Proceedings of the American Philosophical Society,Vol. 124,pp. 323-338 (1980),reprinted in ref. 75.

    Google Scholar 

  73. M. O. Scully, B. G. Englert,and H. Walther,Quantum optical tests of complementarity, Nature 351:111–116 (1991).

    Google Scholar 

  74. J. von Neumann, Mathematische Grundlagen der Quantenmechanik(Springer-Verlag, Berlin,1932),English translation by R. T. Beyer, Mathematical Foundations of Quantum Mechanics(Princeton University Press,Princeton,N.J.,1955).

    Google Scholar 

  75. J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement(Princeton University Press, Princeton,N.J.,1983).

    Google Scholar 

  76. E. P. Wigner,The problem of measurement, Amer. J. Phys. 31:6–15 (1963),reprinted in ref. 75.

    Google Scholar 

  77. E. P. Wigner,Interpretation of quantum mechanics,in ref. 75 (1976).

  78. W. K. Wooters and W. H. Zurek,A single quantum cannot be cloned, Nature 299:802–803 (1982).

    Google Scholar 

  79. W. H. Zurek,Environment-induced superselection rules, Phys. Rev. D 26:1862–1880 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dürr, D., Goldstein, S. & Zanghì, N. Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory. Journal of Statistical Physics 116, 959–1055 (2004). https://doi.org/10.1023/B:JOSS.0000037234.80916.d0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037234.80916.d0

Navigation