Skip to main content
Log in

On the Nature of Fermi Golden Rule for Open Quantum Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a general class of models consisting of a small quantum system \(S\)interacting with a reservoir \(R\). We compare three applications of 2nd order perturbation theory (the Fermi Golden Rule) to the study of such models: (1) the van Hove (weak coupling) limit for the dynamics reduced to \(S\); (2) the Fermi Golden Rule applied to the Liouvillean—an argument that was used in recent papers on the return to equilibrium; (3) the Fermi Golden Rule applied to the so-called C-Liouvillean. These three applications lead to three Level Shift Operators. As our main result, we prove that if the reservoir \(R\)is thermal (if it satisfies the KMS condition), then the Level Shift Operator obtained in (1) (often called the Davies generator) and the Level Shift Operator constructed in (2) are connected by a similarity transformation. We also show that the Davies generator coincides with the Level Shift Operator obtained in (3) for a general \(R\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Brattelli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Volume 1, 2nd edn. (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  2. O. Brattelli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Volume 2, 2nd edn. (Springer-Verlag, Berlin, 1996).

    Google Scholar 

  3. V. Bach, J. Fröhlich, and I. Sigal, Return to equilibrium, J. Math. Phys. 41:3985 (2000).

    Google Scholar 

  4. E. B. Davies, Markovian master equations, Comm. Math. Phys. 39:91 (1974).

    Google Scholar 

  5. E. B. Davies, Markovian master equations II, Math. Ann. 219:147 (1976).

    Google Scholar 

  6. 6. E. B. Davies, One Parameter Semigroups(Academic Press, 1980).

  7. J. Derezinski and V. Jakšic, Spectral theory of Pauli-Fierz operators, J. Func. Anal. 180:241 (2001).

    Google Scholar 

  8. J. Derezinski and V. Jakšic, Return to equilibrium for Pauli-Fierz systems, Ann. Henri Poincaré 4:739–793 (2003).

    Google Scholar 

  9. J. Derezinski and V. Jakšic, in preparation.

  10. J. Derezinski, V. Jakšic, and C. A. Pillet, Perturbation theory of W*-dynamics, Liouvilleans and KMS-states, to appear in Rev. Math. Phys.

  11. E. Fermi, Nuclear Physics,Notes compiled by J. Orear, A. H. Rosenfeld, and R. A. Schluter (The University of Chicago Press, Chicago, 1950).

    Google Scholar 

  12. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Properties of quantum markovian master equations, Rep. Math. Phys. 13:149 (1978).

    Google Scholar 

  13. R. Haag, Local Quantum Physics(Springer-Verlag, Berlin, 1993).

    Google Scholar 

  14. F. Haake, Statistical treatment of open systems by generalized master equation, in Springer Tracts in Modern Physics, Vol. 66 (Springer-Verlag, Berlin, 1973).

    Google Scholar 

  15. V. Jakšic and C.-A. Pillet, On a model for quantum friction III. Ergodic properties of the spin-boson system, Comm. Math. Phys. 178:627 (1996).

    Google Scholar 

  16. V. Jakšic and C.-A. Pillet, Spectral theory of thermal relaxation, J. Math. Phys. 38:1757 (1997).

    Google Scholar 

  17. V. Jakšic and C.-A. Pillet, From resonances to master equations, Ann. Inst. Henri Poincaré 67:425 (1997).

    Google Scholar 

  18. V. Jakšic and C.-A. Pillet, Non-equilibrium steady states for finite quantum systems coupled to thermal reservoirs, Comm. Math. Phys. 226:131 (2002).

    Google Scholar 

  19. V. Jakšic and C.-A. Pillet, Mathematical theory of non-equilibrium quantum statistical mechanics, J. Stat. Phys. 108:787 (2002).

    Google Scholar 

  20. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II. Nonequilibrium Statistical Mechanics(Springer-Verlag, Berlin, 1985).

    Google Scholar 

  21. M. Merkli, Positive commutators in non-equilibrium quantum statistical mechanics, Comm. Math. Phys. 223:327 (2001).

    Google Scholar 

  22. J. Lebowitz and H. Spohn, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs, Adv. Chem. Phys. 39:109 (1978).

    Google Scholar 

  23. W. Pauli, Fesrshrift zum 60. Gerburstage A. Sommerfeld(Hirzel, Leipzig, 1928), p. 30.

    Google Scholar 

  24. W. Pauli, Pauli Lectures on Physics: Volume 4. Statistical Mechanics,C. P. Enz, ed. (MIT Press, Cambridge, 1973).

    Google Scholar 

  25. C.-A. Pillet, Private communication.

  26. D. Ruelle, Natural nonequilibrium states in quantum statistical mechanics, J. Stat. Phys. 98:57 (2000).

    Google Scholar 

  27. S. Stratila, Modular Theory in Operator Algebras(Abacus Press, Turnbridge Wells, 1981).

    Google Scholar 

  28. S. Stratila and L. Zsido, Lectures on von Neumann Algebras(Abacus Press, Turnbridge Wells, 1979).

    Google Scholar 

  29. L. Van Hove, Master equation and approach to equilibrium for quantum systems, in Fundamental Problems in Statistical Mechanics, combined by E. G. D. Cohen, (North-Holand, Amsterdam, 1962).

    Google Scholar 

  30. V. Weisskopf and E. P. Wigner, Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie, Z. Phys. 63:54 (1930).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dereziński, J., Jakšić, V. On the Nature of Fermi Golden Rule for Open Quantum Systems. Journal of Statistical Physics 116, 411–423 (2004). https://doi.org/10.1023/B:JOSS.0000037208.99352.0a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037208.99352.0a

Navigation