Skip to main content
Log in

Ground-State Correlation Functions for an Impenetrable Bose Gas with Neumann or Dirichlet Boundary Conditions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study density correlation functions for an impenetrable Bose gas in a finite box, with Neumann or Dirichlet boundary conditions in the ground state. We derive the Fredholm minor determinant formulas for the correlation functions. In the thermodynamic limit, we express the correlation functions in terms of solutions of nonlinear differential equations which were introduced by Jimbo, Miwa, Môri, and Sato as a generalization of the fifth Painlevé equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. M. McCoy and T. T. Wu, Theory of Toeplitz determinants and the spin correlation functions of the two-dimensional Ising model 4, Phys. Rev. 162:436 (1967).

    Google Scholar 

  2. R. Z. Bariev, Correlation functions of the semi-infinite two-dimentional Ising model 1, Theoret. Math. Phys. 40:623 (1979).

    Google Scholar 

  3. R. Z. Bariev, Correlation functions of semi-infinite two-dimensional Ising model 3, Theoret. Math. Phys. 77:1090 (1988).

    Google Scholar 

  4. E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A21:2375 (1988).

    Google Scholar 

  5. M. Jimbo, R. Kedem, T. Kojima, H. Konno, and T. Miwa, XXZ chain with a boundary, Nucl. Phys. B411[S]:437 (1995).

    Google Scholar 

  6. T. Schultz, Note on the one-dimensional gas of point-particle boson, J. Math. Phys. 4:666 (1963).

    Google Scholar 

  7. A. Lenard, Momentum distribution in the ground state of one-dimensional system of Impenetrable Bosons, J. Math. Phys. 5:930 (1966).

    Google Scholar 

  8. M. Jimbo, T. Miwa, Y. Môri, and M. Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica 1D:80 (1980).

    Google Scholar 

  9. M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 6:516 (1960).

    Google Scholar 

  10. B. M. McCoy and S. Tang, Connection formulae for Painlevé V functions II, Physica 20D:187 (1986).

    Google Scholar 

  11. H. G. Vaidya and C. A. Tracy, One particle reduced density matrix of impenetrable bosons in one dimension at zero temperature, Phys. Rev. Lett. 42:3 (1979).

    Google Scholar 

  12. H. G. Vaidya, Thesis, State University of New York at Stony Brook (1978).

  13. B. M. McCoy, C. A. Tracy, and T. T. Wu, Painlevé functions of the third kind, J. Math. Phys. 18:1958 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, T. Ground-State Correlation Functions for an Impenetrable Bose Gas with Neumann or Dirichlet Boundary Conditions. Journal of Statistical Physics 88, 713–743 (1997). https://doi.org/10.1023/B:JOSS.0000015169.89162.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000015169.89162.d9

Navigation