Skip to main content
Log in

A Monte Carlo Sampling Scheme for the Ising Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we describe a Monte Carlo sampling scheme for the Ising model and similar discrete-state models. The scheme does not involve any particular method of state generation but rather focuses on a new way of measuring and using the Monte Carlo data. We show how to reconstruct the entropy S of the model, from which, e.g., the free energy can be obtained. Furthermore we discuss how this scheme allows us to more or less completely remove the effects of critical fluctuations near the critical temperature and likewise how it reduces critical slowing down. This makes it possible to use simple state generation methods like the Metropolis algorithm also for large lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Ising, Beitrag zur Theorie des Ferromagnetismus, Z. Physik 31:253–258 (1925).

    Google Scholar 

  2. L. Onsager, Crystal statistics I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65:117–149 (1944).

    Google Scholar 

  3. B. A. Cipra, An introduction to the Ising model, Amer. Math. Monthly 94:937–959 (1987).

    Google Scholar 

  4. N. Metropolis, A. Rosenblut, M. Rosenbluth, A. Teller, and E. Teller, Equation of state calculation by fast computing machines, J. Chem. Phys. 21:1087–1092 (1953).

    Google Scholar 

  5. U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett 62:361 (1989).

    Google Scholar 

  6. R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58:86–88 (1987).

    Google Scholar 

  7. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (The Clarendon Press Oxford University Press, New York, 1999).

    Google Scholar 

  8. E. H. Lieb and Jakob Yngvason, The physics and mathematics of the second law of thermodynamics, Phys. Rep. 310:1–96 (1999).

    Google Scholar 

  9. R. Häggkvist and P. H. Lundow, The Ising partition function for 2D grids with cyclic boundary: Computation and analysis, J. Stat. Phys. 108:429–457 (2002). See also http://www.math.umu.se/~phl.

    Google Scholar 

  10. Roland Häggkvist, Anders Rosengren, Daniel Andrén, Petras Kundrotas, Per Håkan Lundow, and Klas Markström, On the 3-Dimensional Ising Model, manuscript.

  11. P. H. Lundow and Klas Markström, A New Look at the Phase Transition of the 5-Dimensional Ising Model, manuscript.

  12. P. M. C. de Oliveira, Broad histogram simulation; Microcanonical Ising dynamics, Int. J. Mod. Phys. C 3:497–503 (1998).

    Google Scholar 

  13. B. A. Berg and U. H. E. Hansmann, Configuration space for random walk dynamics, Eur. Phys. J. B 6:395–398 (1998).

    Google Scholar 

  14. J.-S. Wang and R. H. Swendsen, Transition matrix Monte Carlo method, J. Stat. Phys. 106:245–285 (2002).

    Google Scholar 

  15. Roland Häggkvist, Anders Rosengren, Daniel Andrén, Petras Kundrotas, Per Håkan Lundow, and Klas Markström, Exact Calcuclation of the Ising Partition Function for Large Square Grids, manuscript.

  16. A. M. Ferrenberg and D. P. Landau, Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study, Phys. Rev. B 44:5081–5091 (1991).

    Google Scholar 

  17. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2000).

  18. J.-S. Wang and R. H. Swendsen, Transition Matrix Monte Carlo, arXiv:cond.mat/0104418 v1, 23 Apr 2001 (2001).

  19. C. Borgs, J. Chayes, A. Frieze, J. H. Kim, P. Tetali, E. Vigoda, and V. Vu, Torpid Mixing of Some mcmc Algorithms in Statistical Physics, Proceedings of FOCS '99 (1999), pp. 218–229. Preprint available at http://www.math.cmu.edu/~af1p/papers.html.

  20. F. Wang and M. Suzuki, Finite-size scaling properties of the damage distance and dynamical critical exponent for Ising model, Physica A 220:534–541 (1995).

    Google Scholar 

  21. F. Wang and D. P. Landau, Efficient, multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Let. 86:2050–2053 (2001).

    Google Scholar 

  22. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).

  23. R. J. Baxter, Potts model at the critical temperature, J. Phys. C 6:L445–L448 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häggkvist, R., Rosengren, A., Andrén, D. et al. A Monte Carlo Sampling Scheme for the Ising Model. Journal of Statistical Physics 114, 455–480 (2004). https://doi.org/10.1023/B:JOSS.0000003116.17579.5d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000003116.17579.5d

Navigation