Skip to main content
Log in

Crossover Between Mean-Field and Ising Critical Behavior in a Lattice-Gas Reaction-Diffusion Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Lattice-gas models for CO oxidation can exhibit a discontinuous nonequilibrium transition between reactive and inactive states, which disappears above a critical CO-desorption rate. Using finite-size-scaling analysis, we demonstrate a crossover from Ising to mean-field behavior at the critical point, with increasing surface mobility of adsorbed CO or with decreasing system size. This behavior is elucidated by analogy with that of equilibrium Ising-type systems with long-range interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Haken, Rev. Mod. Phys. 47:67 (1975).

    Google Scholar 

  2. A. S. Mikhailov, Foundations of Synergetics I: Distributed Active Systems (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  3. A. Nitzan and P. Ortoleva, Phys. Rev. A 21:1735 (1980).

    Google Scholar 

  4. J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  5. R. M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett. 56:2553 (1986).

    PubMed  Google Scholar 

  6. J. W. Evans, D.-J. Liu, and M. Tammaro, Chaos 12:131 (2002).

    Google Scholar 

  7. D.-J. Liu and J. W. Evans, Phys. Rev. Lett. 84:955 (2000).

    Google Scholar 

  8. B. Schmittmann and R. K. P. Zia, Phys. Rep. 301:45 (1998).

    Google Scholar 

  9. J. M. Gonzalez-Miranda, P. L. Garido, J. Marro, and J. L. Lebowitz, Phys. Rev. Lett. 59:1934 (1987).

    Google Scholar 

  10. A. de Masi, P. A. Ferrari, and J. L. Lebowitz, Phys. Rev. Lett. 55:1947 (1985).

    Google Scholar 

  11. D.-J. Liu and J. W. Evans, J. Chem. Phys. 117:7319 (2002).

    Google Scholar 

  12. J. W. Evans and M. Tammaro, in Computer Simulation Studies in Condensed-Matter Physics, D. P. Landau and H.-B. Schuttler, eds. (Springer, Berlin, 1999), Vol. XI, p. 103.

    Google Scholar 

  13. C. Borgs and W. Janke, Phys. Rev. Lett. 68:1738 (1992).

    Google Scholar 

  14. K. K. Mon and K. Binder, Phys. Rev. E 48:2498 (1993).

    Google Scholar 

  15. E. Luijten, H. W. J. Blöte, and K. Binder, Phys. Rev. E 54:4626 (1996).

    Google Scholar 

  16. V. Privman and M. E. Fisher, J. Stat. Phys. 33:385 (1983).

    Google Scholar 

  17. T. Tomé and R. Dickman, Phys. Rev. E 47:948 (1993).

    Google Scholar 

  18. N. Pavlenko, R. Imbihl, J. W. Evans, and D.-J. Liu, Phys. Rev. E 68:016212 (2003).

    Google Scholar 

  19. B. J. Brosilow and R. M. Ziff, Phys. Rev. A 46:4534 (1992).

    Google Scholar 

  20. J. W. Evans and M. Sabella, Trends Stat. Phys. 1:107 (1994).

    Google Scholar 

  21. M. Tammaro, M. Sabella, and J. W. Evans, J. Chem. Phys. 103:10277 (1995).

    Google Scholar 

  22. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  23. For small values of “bare” hop rate h, D scales differently h, as spatial coupling from two-site adsorption and reaction processes competes with that from diffusion. One expects that D ~ c + h, where c = O(1). See E. Clément, P. Leroux-Hugon, and L. M. Sander, Phys. Rev. Lett. 67:1661 (1991); J. W. Evans and T. R. Ray, Phys. Rev. E 50:4302 (1994).

    Google Scholar 

  24. R. Imbihl and G. Ertl, Chem. Rev. 95:697 (1995).

    Google Scholar 

  25. E. Luijten, H. W. J. Blöte, and K. Binder, Phys. Rev. E 56:6540 (1997).

    Google Scholar 

  26. U. C. Täuber, Acta Physica Slovaca 52:505 (2002), cond-mat/0205327.

    Google Scholar 

  27. H. Hinrichsen, Adv. Phys. 49:815 (2000).

    Google Scholar 

  28. Y. Suchorski, J. Beben, E. W. James, J. W. Evans, and R. Imbihl, Phys. Rev. Lett. 82:1907 (1999).

    Google Scholar 

  29. Y. Suchorski, J. Beben, R. Imbihl, E. W. James, D.-J. Liu, and J. W. Evans, Phys. Rev. B 63:165417 (2001).

    Google Scholar 

  30. In real reaction systems, we expect that the chemical diffusion rates (rather than the microscopic hop rates) controls crossover. Increased coverage does not necessarily reduce chemical diffusivity in single species adlayers. However, it is generally expected to reduce chemical diffusivity in mixed adlayers due to effects of percolation and interactions, see, e.g., D.-J. Liu and J. W. Evans, J. Chem. Phys. 113:10252 (2000).

    Google Scholar 

  31. P. Hanggi, H. Grabert, P. Talkner, and H. Thomas, Phys. Rev. A 29:371 (1984).

    Google Scholar 

  32. H. Malchow and L. Schimansky-Geier, in Noise and Diffusion in Bistable Nonequilibrium Systems, Teubner Texte zur Physik, W. Ebeling, W. Meiling, A. Uhlmann, and B. Wilhelmi, eds. (Teubner Verlag, Leipzig, 1986).

    Google Scholar 

  33. C. W. Gardiner, in Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer Series in Synergetics, H. Haken, ed. (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  34. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th ed. (Clarendon Press, Oxford, 2002), p. 859.

    Google Scholar 

  35. M. N. Barber, in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1983), Vol. 8, pp. 146–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, DJ., Pavlenko, N. & Evans, J.W. Crossover Between Mean-Field and Ising Critical Behavior in a Lattice-Gas Reaction-Diffusion Model. Journal of Statistical Physics 114, 101–114 (2004). https://doi.org/10.1023/B:JOSS.0000003105.50683.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000003105.50683.c6

Navigation