Skip to main content
Log in

Construction of Synthetic Genes for Analogs of Spider Silk Spidroin 1 and Their Expression in Tobacco Plants

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

To obtain transgenic tobacco plants expressing recombinant analogs of spider dragline silk spidroin 1, artificial 1f5 and 1f 9 coding for spidroin 1 analogs were 3"-fused in-frame with the reporter lichenase gene. The Tr2" weak constitutive promoter of Agrobacterium tumefaciens T-DNA and the strong constitutive promoter of the cauliflower mosaic virus 35S RNA gene were used as regulatory elements. The expression cassettes were used to transform agrobacteria and then introduced in tobacco leaf disks. On evidence of Southern hybridization, transgenic plants each carried a single copy of a hybrid gene, which corresponded in size to the constructed one. Zymography and Western blotting revealed full-length hybrid proteins in leaf extracts of transgenic plants. The results testified that plants can maintain and express synthetic genes for spider silks and, consequently, may be used as a convenient producer of recombinant silk analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hinman M.B., Stauffer S.L., Lewis R.V. 1994. Mechanical and chemical properties of certain spider silks. In: Silk Polymers: Materials Science and Biotechnology. Eds. Kaplan D., Adams W.W., Farmer B., Viney C. Washington: American Chemical Society, pp. 222–233.

    Google Scholar 

  2. Guerrette P.A., Ginzinger D.G., Weber B.H.F., Gosline J.M. 1996. Silk properties determined by gland-specific expression of spider fibroin gene family. Science. 272, 112–115.

    Google Scholar 

  3. Hayashi C.Y., Lewis R.V. 1998. Evidence from flagelli-form silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol. 275, 773–784.

    Google Scholar 

  4. Gatesy J., Hayashi C., Motriuk D., Woods J., Lewis R. 2001. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science. 291, 2603–2605.

    Google Scholar 

  5. Eds. Kaplan D.L., Adams W.W., Viney C., Farmer B.L. Silk Polymers: Materials Science and Biotechnology. 1994. Washington: ACS Books.

    Google Scholar 

  6. Gosline J., Guerette P., Ortlep C., Savage K. 1999. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 302, 3295–3303.

    Google Scholar 

  7. Winkler S., Szela S., Avtges P., ValLuzzi R., Kirschner D.A., Kaplan D. 1999. Designing recombinant spider silk proteins to control assembly. Int. J. Biol. Macromol. 2 4, 265–270.

    Google Scholar 

  8. Fahnestock S. R., Irwin S. L. 1997. Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl. Microbiol. Biotechnol. 47, 23–32.

    Google Scholar 

  9. Fahnestock S. R., Bedzyk L. A. 1997. Production of synthetic spider dragline silk protein in Pichia pastoris. Appl. Microbiol. Biotechnol. 47, 33–39.

    Google Scholar 

  10. Scheller J., Guhrs K.-H., Grosse F., Conrad U. 2001. Production of spider silk proteins in tobacco and potato. Nature Biotechnol. 19, 573–577.

    Google Scholar 

  11. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  12. Bogush V.G., Sidoruk K.V., Molchan O.K., Ptitsyn L.R., Al'tman I.B., Kozlov D.G., Efremov B.D., Benevolenskii S.V., Agapov I.I., Mashko S.V., Debabov V.G. 2000. Molecular cloning and expression in yeast of synthetic genes coding for dragline spidroin 1 analogs. Biotekhnologiya. 2, 11–22.

    Google Scholar 

  13. Mysiychuk K.A., Goldenkova I.V., Abdeev R.M., Kobets N.S., Piruzian E.S. 2000. Construction and properties of deletion derivatives of Clostridium thermocellum lichenase and their use to obtain bifunctional hybrid proteins. Biokhimiya. 65, 1659–1665.

    Google Scholar 

  14. Alliotte T., Zhu L.H., Van Montagu M., Inze D. 1988. Plant expression vectors with the origin of replication of the W-type plasmids. Plasmid. 19, 251–254.

    Google Scholar 

  15. Movsesyan N.R., Alizade Kh., Abdeev R.A., Mysiychuk K.A., Popov Yu.G., Piruzian E.S. 2001. Transgenic tobacco plants expressing bacterial genes for thermo-stable glucanases. Genetika. 37, 745–752.

    Google Scholar 

  16. Lazo G.R., Stein P.A., Ludwig R.A. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnol. 9, 963–967.

    Google Scholar 

  17. Plant genetic transformation and gene expression: A laboratory manual. 1988. Eds. Draper, J., Scott, R., Armitage, P., and Walden, R. Oxford: Blackwell.

    Google Scholar 

  18. van Lijsebettens, Valvekens M. 1987. In: EMBO Practical Course on Plant Molecular Biology. Eds. van Lijsebettens, M., Valvekens D. Gent, Belgium, pp. 15–18.

    Google Scholar 

  19. Deblaere R., Reynaerts A., Hofte H., Hernalsteens J.P., Leemans J., van Montagu M. 1987. Vector for cloning in plant cells. Meth. Enzymol. 153, 277–292.

    Google Scholar 

  20. Wood T.M., Bhat K.M. 1988. Methods for measuring cellulase activities. Meth. Enzymol. 160, 87–112.

    Google Scholar 

  21. Bradford M.M. 1976. A rapid sensitive method for the action of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72, 248–254.

    Google Scholar 

  22. Piruzian E.S., Monzavi-Karbassi B., Darbinian N.S., Goldenkova I.V., Kobets N.S., Mochulsky A.V. 1998. The use of a thermoactive β-glucanase gene from Clostridium thermocellum as a reporter gene in plants. Mol. Gen. Genet. 257, 561–567.

    Google Scholar 

  23. Piruzian E.S., Goldenkova I.V., Mysiychuk K.A., Kobets N.S., Arman I.P., Bobrysheva I.V., Chekhuta I.F., Glazkova D. 2002. A reporter system for prokaryotic and eukaryotic cells based on the thermostable lichenase from Clostridium thermocellum. Mol. Genet. Genomics. 266, 778–786.

    Google Scholar 

  24. Goldenkova I.V., Mysiychuk K.A., Piruzian E.S. 2002. A thermostable Clostridium thermocellum lichenase-based reporter system for studying the gene expression regulation in prokaryotic and eukaryotic cells. Mol. Biol. 36, 868–876.

    Google Scholar 

  25. Herbers K., Sonnewald U. 1999. Production of new-modified proteins in transgenic plants. Curr. Opin. Biotechnol. 10, 163–168.

    Google Scholar 

  26. Fiedler U., Conrad U. 1995. High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Biotechnol. 13, 1090–1093.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piruzian, E.S., Bogush, V.G., Sidoruk, K.V. et al. Construction of Synthetic Genes for Analogs of Spider Silk Spidroin 1 and Their Expression in Tobacco Plants. Molecular Biology 37, 554–560 (2003). https://doi.org/10.1023/A:1025187311024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025187311024

Navigation