Skip to main content
Log in

Spider silk-like proteins derived from transgenic Nicotiana tabacum

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The high tensile strength and biocompatibility of spider dragline silk makes it a desirable material in many engineering and tissue regeneration applications. Here, we present the feasibility to produce recombinant proteins in transgenic tobacco Nicotiana tabacum with sequences representing spider silk protein building blocks . Recombinant mini-spidroins contain native N- and C-terminal domains of major ampullate spidroin 1 (rMaSp1) or rMaSp2 flanking an abbreviated number (8, 16 or 32) of consensus repeat domains. Two different expression plasmid vectors were tested and a downstream chitin binding domain and self-cleavable intein were included to facilitate protein purification. We confirmed gene insertion and RNA transcription by PCR and reverse-transcriptase PCR, respectively. Mini-spidroin production was detected by N-terminus specific antibodies. Purification of mini-spidroins was performed through chitin affinity chromatography and subsequent intein activation with reducing reagent. Mini-spidroins, when dialyzed and freeze-dried, formed viscous gelatin-like fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allmeling C, Jokuszies A, Reimers K, Kall S, Choi CY, Brandes G, Kasper C, Scheper T, Guggenheim M, Vogt PM (2008) Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif 41:408–420

    Article  CAS  PubMed  Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  CAS  PubMed  Google Scholar 

  • Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 49:31–38

    Article  CAS  PubMed  Google Scholar 

  • Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One. doi:10.1371/journal.pone.0000514

    PubMed  PubMed Central  Google Scholar 

  • Beckwitt R, Arcidiacono S (1994) Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). J Biol Chem 269:6661–6663

    CAS  PubMed  Google Scholar 

  • Bini E, Knight DP, Kaplan DL (2004) Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol 335:27–40

    Article  CAS  PubMed  Google Scholar 

  • Dey N, Maiti I (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782

    Article  CAS  PubMed  Google Scholar 

  • Dicko C, Vollrath F, Kenney JM (2004) Spider silk protein refolding is controlled by changing pH. Biomacromolecules 5:704–710

    Article  CAS  PubMed  Google Scholar 

  • Evans TC, Benner J, Xu M-Q (1999) The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem 274:18359–18363

    Article  CAS  PubMed  Google Scholar 

  • Fahnestock SR, Bedzyk LA (1997) Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol 47:33–39

    Article  CAS  PubMed  Google Scholar 

  • Fisher D, Guiltinan M (1995) Rapid, efficient production of homozygous transgenic tobacco plants with Agrobacterium tumefaciens: a seed-to-seed protocol. Plant Mol Biol Rep 13:278–289

    Article  CAS  Google Scholar 

  • Gaines IV, Marcotte WR Jr (2008) Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes. Insect Mol Biol. doi:10.1111/j.1365-2583.2008.00828.x

    PubMed  PubMed Central  Google Scholar 

  • Gaines WA, Marcotte WR Jr (2011) Recombinant dragline silk-like proteins-expression and purification. AATCC Rev 11:75–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaines WA, Sehorn MG, Marcotte WR Jr (2010) Spidroin N-terminal domain promotes a pH-dependent association of silk proteins during self-assembly. J Biol Chem 285:40745–40753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Lin Z, Huang W, Lai CC, Fan JS, Yang D (2013) Structural characterization of minor ampullate spidroin domains and their distinct roles in fibroin solubility and fiber formation. PLoS One. doi:10.1371/journal.pone.0056142

    Google Scholar 

  • Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol. doi:10.1186/1471-2148-10-243

    PubMed  PubMed Central  Google Scholar 

  • Gosline JM, DeMont ME, Denny MW (1986) The structure and properties of spider silk. Endeavour 10:37–43

    Article  Google Scholar 

  • Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303

    CAS  PubMed  Google Scholar 

  • Gronau G, Qin Z, Buehler MJ (2013) Effect of sodium chloride on the structure and stability of spider silk’s N-terminal protein domain. Biomat Sci 1:276–284

    Article  CAS  Google Scholar 

  • Guehrs KH, Schlott B, Grosse F, Weisshart K (2008) Environmental conditions impinge on dragline silk protein composition. Insect Mol Biol 17:553–564

    Article  CAS  PubMed  Google Scholar 

  • Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465:239–242

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann V, Weichert N, Rakhimova M, Conrad U (2013a) Spider silks from plants—a challenge to create native-sized spidroins. Biotechnol J 8:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann V, Weichert N, Menzel M, Knoch D, Paege N, Scheller J, Spohn U, Conrad U, Gils M (2013b) Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res 22:369–377

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann V, Menzel M, Weichert N, Reimers K, Spohn U, Conrad U (2015) In planta production of ELPylated spidroin-based proteins results in non-cytotoxic biopolymers. BMC Biotechnol 15:9. doi:10.1186/s12896-015-0123-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedhammar M, Bramfeldt H, Baris T, Widhe M, Askarieh G, Nordling K, Aulock S, Johansson J (2010) Sterilized recombinant spider silk fibers of low pyrogenicity. Biomacromolecules 11:953–959

    Article  CAS  PubMed  Google Scholar 

  • Hinman MB, Lewis RV (1992) Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem 267:19320–19324

    CAS  PubMed  Google Scholar 

  • Huang W, Lin Z, Sin YM, Li D, Gong Z, Yang D (2006) Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana. Biochimie 88:849–858

    Article  CAS  PubMed  Google Scholar 

  • Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004a) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43:13604–13612

    Article  CAS  PubMed  Google Scholar 

  • Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004b) Novel assembly properties of recombinant spider dragline silk proteins. Curr Biol 14:2070–2074

    Article  CAS  PubMed  Google Scholar 

  • Ittah S, Cohen S, Garty S, Cohn D, Gat U (2006) An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 7:1790–1795

    Article  CAS  PubMed  Google Scholar 

  • Ittah S, Michaeli A, Goldblum A, Gat U (2007) A model for the structure of the C-terminal domain of dragline spider silk and the role of its conserved cysteine. Biomacromolecules 8:2768–2773

    Article  CAS  PubMed  Google Scholar 

  • Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476

    Article  CAS  PubMed  Google Scholar 

  • Lewis RV, Hinman M, Kothakota S, Fournier MJ (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expr Purif 7:400–406

    Article  CAS  PubMed  Google Scholar 

  • Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of peanut chlorotic streak Caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. BBRC 244:440–444

    CAS  PubMed  Google Scholar 

  • Menassa R, Zhu H, Karatzas CN, Lazaris A, Richman A, Brandle J (2004) Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol J 2:431–438

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Zhang Y, Nakagaki K, Zhao T, Zhao A, Meng Y, Nakagaki M, Park EY, Maenaka K (2006) Expression of spider flagelliform silk protein in Bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system. Appl Microbiol Biotechnol 71:192–199

    Article  CAS  PubMed  Google Scholar 

  • Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV (2005) Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 6:3152–3159

    Article  CAS  PubMed  Google Scholar 

  • Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J (2007) Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 16:239–249

    Article  CAS  PubMed  Google Scholar 

  • Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci USA 105:6590–6595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schacht K, Scheibel T (2011) Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12:2488–2495

    Article  CAS  PubMed  Google Scholar 

  • Scheller J, Guhrs KH, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577

    Article  CAS  PubMed  Google Scholar 

  • Seidel A, Liivak O, Jelinski LW (1998) Artificial spinning of spider silk. Macromolecules 31:6733–6736

    Article  CAS  Google Scholar 

  • Service, R.F (2002) Materials science. Mammalian cells spin a spidery new yarn. Science 295:419–421

    Article  Google Scholar 

  • Sponner A, Unger E, Grosse F, Weisshart K (2004) Conserved C-termini of spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules 5:840–845

    Article  CAS  PubMed  Google Scholar 

  • Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K (2005) Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry 44:4727–4736

    Article  CAS  PubMed  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) Review article: the silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Telenti A, Southworth M, Alcaide F, Daugelat S, Jacobs WR, Perler FB (1997) The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol 179:6378–6382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teulé F, Miao Y-G, Sohn B-H, Kim Y-S, Hull JJ, Fraser MJ, Lewis RV, Jarvis DL (2011) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci USA 109:923–928

    Article  Google Scholar 

  • Watanabe T, Ito Y, Yamada T, Hashimoto M, Sekine S, Tanaka H (1994) The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J Bacteriol 176:4465–4472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weichert N, Hauptmann V, Menzel M, Schallau K, Gunkel P, Hertel TC, Pietzsch M, Spohn U, Conrad U (2014) Transglutamination allows production and characterization of native-sized ELPylated spider silk proteins from transgenic plants. Plant Biotechnol J 12:265–275

    Article  CAS  PubMed  Google Scholar 

  • Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA (2009) Engineering the Salmonella type III secretion system to export spider silk monomers. Mol Syst Biol. doi:10.1038/msb.2009.62

    PubMed  PubMed Central  Google Scholar 

  • Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 107:14059–14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci USA 87:7120–7124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu HT, Fan BL, Yu SY, Huang YH, Zhao ZH, Lian ZX, Dai YP, Wang LL, Liu ZL, Fei J et al (2007) Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim Biotechnol 18:1–12

    Article  PubMed  Google Scholar 

  • Yang J, Barr LA, Fahnestock SR, Liu ZB (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14:313–324

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hu J, Miao Y, Zhao A, Zhao T, Wu D, Liang L, Miikura A, Shiomi K, Kajiura Z et al (2008) Expression of EGFP-spider dragline silk fusion protein in BmN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Mol Biol Rep 35:329–335

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Indu Maiti at the Kentucky Tobacco Research and Development Center for the tobacco expression plasmids and Allison Nelson for technical support. This work was funded by grant 1R15EB007403-01 from the National Institute of Biomedical Imaging and Bioengineering to WRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Marcotte Jr..

Additional information

Charlene Gravgaard and Heather McCartney have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1606 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C.A., Russo, J., Gravgaard, C. et al. Spider silk-like proteins derived from transgenic Nicotiana tabacum . Transgenic Res 25, 517–526 (2016). https://doi.org/10.1007/s11248-016-9949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9949-1

Keywords

Navigation