Skip to main content
Log in

Adaptive finite element for semi-linear convection–diffusion problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article a strategy of adaptive finite element for semi-linear problems, based on minimizing a residual-type estimator, is reported. We get an a posteriori error estimate which is asymptotically exact when the mesh size h tends to zero. By considering a model problem, the quality of this estimator is checked. It is numerically shown that without constraint on the mesh size h, the efficiency of the a posteriori error estimate can fail dramatically. This phenomenon is analysed and an algorithm which equidistributes the local estimators under the constraint h ⩽ h max is proposed. This algorithm allows to improve the computed solution for semi-linear convection–diffusion problems, and can be used for stabilizing the Lagrange finite element method for linear convection–diffusion problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.K. Aziz and I. Babuška, Survey Lecture on the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Academic Press, New York, 1972).

    Google Scholar 

  2. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15(4) (1978) 736–754.

    Article  MathSciNet  Google Scholar 

  3. I. Babuška and W.C. Rheinboldt, Analysis of optimal finite element meshes in ℝ, Math. Comp. 36(146) (1979) 435–463.

    Article  Google Scholar 

  4. I. Babuška and W.C. Rheinboldt, A posteriori error analysis of finite element solutions for one-dimensional problems, SIAM J. Numer. Anal. 18 (1981) 565–589.

    Article  MathSciNet  Google Scholar 

  5. I. Babuška and R. Rodriguez, The problem of the selection of an a posteriori error indicator based on smoothening techniques, Internat. J. Numer. Methods Engrg. 36 (1993) 539–567.

    Article  MathSciNet  Google Scholar 

  6. I. Babuška and W.G. Szmczak, Adaptivity and error estimation for the finite element method applied to convection-diffusion problems, SIAM J. Numer. Anal. 21 (1984) 910–954.

    Article  MathSciNet  Google Scholar 

  7. J. Baranger and H. Elamri, A posteriori error estimates for the adaptive computation of quasi non newtonian flows, M2AN 25 (1991) 31–48.

    MATH  MathSciNet  Google Scholar 

  8. V. Giovangigli and M.D. Smooke, Extinction limits for premixed laminar flames in a stagnation point flow, J. Comput. Phys. 68 (1987) 327–345.

    Article  MATH  Google Scholar 

  9. K. Erikson and C. Johnson, Adaptive finite element methods for parabolic problems IV: Nonlinear problems, Preprint of Department of Mathematics, Chalmers University of Technology, The University of Göteborg 1992-44/ISSN 034-2809 (1992).

  10. P.L. Lions, On the existence of positive solutions of semilinear equations, SIAM Reviews 24 (1982) 441–467.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Pouly, Analyse mathématique et modélisation numérique de combustion de gouttes, Thèse No 1259, Ecole Polytechnique Fédérale de Lausanne (1994).

  12. J. Pousin and J. Rappaz, Consistance, stabilité, erreurs a priori et a posteriori pour des problèmes non linéaires, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) 699–703.

    MATH  MathSciNet  Google Scholar 

  13. J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors estimates for nonlinear problems, Numer. Math. 69(2) (1994) 213–232.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Pouly and J. Pousin, Modelling and numerical investigation of droplets combustion problem, in: First European Conference on Numerical Methods in Engineering, Brussel, eds. C. Hirsch, O.C. Zienkiewicz and E. Onate (Elsevier, Amsterdam, 1992) pp. 851–857.

    Google Scholar 

  15. L. Pouly and J. Pousin, A spray combustion problem, Math. Models Methods Appl. Sci. 2(4) (1994).

  16. M. Stynes and E. O'riordan, Elliptic problem in two dimensions, Math. Comp. 56(195) (1991) 663–675.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62(206) (1994) 445–475.

    Article  MATH  MathSciNet  Google Scholar 

  18. O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recocery (SPR) and adaptive finite element refinement, Comp. Methods Appl. Mech. Engrg. 101 (1992) 207–224.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouly, L., Pousin, J. Adaptive finite element for semi-linear convection–diffusion problems. Advances in Computational Mathematics 7, 235–259 (1997). https://doi.org/10.1023/A:1018946919497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018946919497

Navigation