Skip to main content

Adaptive Solution of a Singularly-Perturbed Convection-Diffusion Problem Using a Stabilized Mixed Finite Element Method

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2017 (ENUMATH 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 126))

Included in the following conference series:

  • 1578 Accesses

Abstract

We explore the applicability of a new adaptive stabilized dual-mixed finite element method to a singularly-perturbed convection-diffusion equation with mixed boundary conditions. We establish the rate of convergence when the flux and the concentration are approximated, respectively, by Raviart-Thomas/Brezzi-Douglas-Marini and continuous piecewise polynomials. We consider a simple a posteriori error indicator and provide some numerical experiments that illustrate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.P. Barrios, J.M. Cascón, M. González, A posteriori error analysis of an augmented mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Eng. 283, 909–922 (2015)

    Article  MathSciNet  Google Scholar 

  2. T.P. Barrios, J.M. Cascón, M. González, Augmented mixed finite element method for the Oseen problem: a priori and a posteriori error analyses. Comput. Methods Appl. Mech. Eng. 313, 216–238 (2017)

    Article  MathSciNet  Google Scholar 

  3. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, Berlin, 1991)

    Book  Google Scholar 

  4. M. Farhloul, A.S. Mounim, A mixed-hybrid finite element method for convection-diffusion problems. Appl. Math. Comput. 171, 1037–1047 (2005)

    MathSciNet  MATH  Google Scholar 

  5. M. González, Stabilized dual-mixed method for the problem of linear elasticity with mixed boundary conditions. Appl. Math. Lett. 30, 1–5 (2014)

    Article  MathSciNet  Google Scholar 

  6. M. González, M. Strugaru, Stabilization and a posteriori error analysis of a mixed FEM for convection-diffusion problems with mixed boundary conditions (submitted)

    Google Scholar 

  7. M. González, S. Korotov, J. Jansson, A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Discrete and Continuous Dynamical Systems, in Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference, Suppl., pp. 525–532 (2015)

    Google Scholar 

  8. A. Logg, K.-A. Mardal, G.N. Wells (eds.), Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book (Springer, Berlin, 2012)

    MATH  Google Scholar 

  9. A. Masud, T.J.R. Hughes, A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Eng. 191, 4341–4370 (2002)

    Article  MathSciNet  Google Scholar 

  10. J.E. Roberts, J.-M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, ed. by P.G. Ciarlet, J.L. Lions, vol. II. Finite Element Methods (Part 1) (North-Holland, Amsterdam, 1991)

    Google Scholar 

  11. J.-M. Thomas, Mixed finite elements methods for convection-diffusion problems, in Numerical Approximation of Partial Differential Equations (Elsevier, New York, 1987), pp. 241–250

    Google Scholar 

Download references

Acknowledgements

The research of the first author was partially supported by MICINN grant MTM2016-76497-R. The research of the second author was supported by the Basque Government through the BERC 2014-2017 programme and by the Spanish Ministry of Economy and Competitivity through the BCAM Severo Ochoa excellence accreditation SEV-2013-0323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, M., Strugaru, M. (2019). Adaptive Solution of a Singularly-Perturbed Convection-Diffusion Problem Using a Stabilized Mixed Finite Element Method. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_69

Download citation

Publish with us

Policies and ethics