Skip to main content
Log in

Decomposition of CO2 Using Pulsed Corona Discharges Combined with Catalyst

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The combination of pulsed corona discharges and catalyst was examined for decomposition of pure carbon dioxide in a corona reactor packed with porous γ-Al2O3 pellets. The decomposition of CO2 was greatly enhanced by packing γ-Al2O3. In the presence of γ-Al2O3, the conversion of CO2, yield of CO reach 23 and 15%, respectively. The CO2 conversion increases with increasing applied voltage and decreasing gas flow rate. The maximum energy efficiency for decomposition of CO2 reaches 318.7 g/kW hr. It was found that high surface area of γ-Al2O3 and strong adsorption capacity of CO2 on γ-Al2O3 play an important role in CO2 decomposition under corona discharges. At the same time, the presence of γ-Al2O3 suppresses the reaction of CO and O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. J. Bradford and M. A. Vannice, Catal. Rev.–Sci. Eng. 41, 1 (1999).

    Google Scholar 

  2. J. Wang, G. Xia, A. Huang, S. Suib, Y. Hayashi, and H. Matsumoto, J. Catal. 185, 152 (1999).

    Google Scholar 

  3. W. O. Davies. J. Chem. Phys. 41, 1846 (1964).

    Google Scholar 

  4. A. Huczko, AIChE J. 30, 811 (1984).

    Google Scholar 

  5. M. Morvová, J. Phys. D: Appl. Phys. 31, 1865 (1998).

    Google Scholar 

  6. I. Maezono and J.-S. Chang, IEEE Trans. Indust. Appl. 26, 651 (1990).

    Google Scholar 

  7. K. Jogan, A. Mizuno, T. Yamamoto, and J. S. Chang, IEEE Trans. Indust. Appl. 29, 879 (1993).

    Google Scholar 

  8. Z. Xie, K. Jogan, and J.-S. Chang, IEEE Industry Applications Society Annual Meeting, 1, 809 (1990).

    Google Scholar 

  9. R. G. Buser and J. J. Sullivan, J. Appl. Phys. 41, 472 (1970).

    Google Scholar 

  10. H. Turčičová, J. Phys. D: Appl. Phys. 27, 106 (1994).

    Google Scholar 

  11. S. L. Brock, M. Marquez, S. L. Suib, Y. Hayashi, and H. Matsumoto, J. Catal. 180, 225 (1998).

    Google Scholar 

  12. S. L. Brock, T. Shimojo, M. Marquez, C. Marun, S. L. Suib, H. Matsumoto, and Y. Hayashi, J. Catal. 184, 123 (1999).

    Google Scholar 

  13. L. Hsieh, W. Lee, C. Li, C. Chen, Y. Wang, and M. Chang, J. Chem. Technol. Biotechnol. 73, 432 (1998).

    Google Scholar 

  14. S. Y. Savinov, H. Lee, H. K. Song, and B.-K. Na, Ind. Eng. Chem. Res. 28, 2540 (1999).

    Google Scholar 

  15. E. H. W. M. Smulders, B. E. J. M. Vanheesch, and S. S. V. B. Vanpaasen, IEEE Trans. Plasma Sci. 26, 1476 (1998).

    Google Scholar 

  16. A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998).

    Google Scholar 

  17. R. G. Tonkyn, S. E. Barlow, and T. M. Orlando, J. Appl. Phys. 80, 4877 (1996).

    Google Scholar 

  18. F. D. Snell, L. S. Ettre Encyclopedia of Industrial Chemical Analysis: Vol. 16, John Wiley and Sons, New York (1972), p. 546.

    Google Scholar 

  19. J. O. Nilsson and J. E. Eninger, IEEE Trans. Plasma Sci. 25, 73 (1997).

    Google Scholar 

  20. M. C. Manchado, J. M. Guil, A. P. Masiá, A. R. Paniego, and J. M. Trejo Menayo, Langmuir 10, 685 (1994).

    Google Scholar 

  21. O. Dewade and G. F. Froment, Appl. Catal. A Gen. 185, 203 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, Y., Jiang, X. Decomposition of CO2 Using Pulsed Corona Discharges Combined with Catalyst. Plasma Chemistry and Plasma Processing 21, 665–678 (2001). https://doi.org/10.1023/A:1012011420757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012011420757

Navigation