Skip to main content
Log in

The Construction of Atom Models: Eliminative Inductivism and its Relation to Falsificationism

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Falsificationism has dominated 20th century philosophy of science. It seemed to have eclipsed all forms of inductivism. Yet recent debates have revived a specific form of eliminative inductivism, the basic ideas of which go back to F. Bacon and J.S. Mill. These modern endorsements of eliminative inductivism claim to show that progressive problem solving is possible using induction, rather than falsification as a method of justification. But this common ground between falsificationism and eliminative inductivism has not led to a detailed investigation into the relationship, if any, which may exist between these two methodologies. This paper reviews several versions of eliminative inductivism, establishes a natural relation between eliminative inductivism and falsificationism, which derives from the distinction between models and theories, and carries out this investigation against a case study of the construction of atom models. The result of the investigation is that falsificationism is a form of eliminative inductivism in the limit of certain constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bacon, F.: 1875, Novum Organum. In J. Spedding, R.L. Ellis and D.D. Heath (eds.), Works. Volume IV, London.

  • Barkla, Ch.G.: 1911, Note on the Energy of Scattered X-radiation. Philosophical Magazine 21: 648–653.

    Google Scholar 

  • Bohr, N.: 1913, On the Constitution of Atoms and Molecules. Philosophical Magazine 26: 1–25.

    Google Scholar 

  • Bohr, N.: 1915, On the Quantum Theory of Radiation and the Structure of the Atom. Philosophical Magazine 30: 394–415.

    Google Scholar 

  • Born, M.: 1927, Quantenmechanik und Statistik. Die Naturwissenschaften 15: 238–242.

    Google Scholar 

  • Born, M.: 1949, Natural Philosophy of Cause and Chance. Oxford: Clarendon.

    Google Scholar 

  • Conway, A.W.: 1913, An Electromagnetic Hypothesis as to the Origin of Series Spectra. Philosophical Magazine 26: 1010–1017.

    Google Scholar 

  • Dirac, P.: 1963, The Evolution of the Physicist's Picture of Nature. Scientific American 208: 45–53.

    Google Scholar 

  • Dorling, J.: 1973, Demonstrative Induction: Its Significant Role in the History of Science. Philosophy of Science 40: 360–372.

    Google Scholar 

  • Earman, J.: 1996, Bayes or Bust?. Cambridge, MA/London: MIT Press.

    Google Scholar 

  • Eddington, A.: 1938, The Philosophy of Physical Science. London: Cambridge University Press.

    Google Scholar 

  • Geiger, H.: 1909-1910, The Scattering of the α-Particles by Matter. Proceedings of the Royal Society of London A, 83: 492–504.

    Google Scholar 

  • Geiger, H., J.H. Fellow and E. Marsden: 1908-1909, On a Diffuse Reflection of the α-Particles. Proceedings of the Royal Society of London A, 82: 495–500.

    Google Scholar 

  • Geiger, H. and E. Marsden: 1913, The Laws of Deflexion of α Particles through Large Angles. Philosophical Magazine 25: 604–623.

    Google Scholar 

  • Goodman, N.: 1972, Problems and Projects. Indianapolis: The Bobbs-Merrill Company.

  • Grünbaum, A.: 1977a, Popper versus Inductivism. In G. Radnitzky and G. Andersson (eds.), Progress and Rationality in Science. Dordrecht: Reidel, pp. 117–142.

    Google Scholar 

  • Grünbaum, A.: 1977b, How Scientific is Psychoanalysis?. In R. Stern, L.S. Horowitz and J. Lynes (eds.), Science and Psychotherapy. New York: Haven Publishing Corp., pp. 219–254.

    Google Scholar 

  • Hawthorne, J.: 1993, Bayesian Induction Is Eliminative Induction. Philosophical Topics 21: 99–138.

    Google Scholar 

  • Heilbron, J.L.: 1968, The Scattering of α and β Particles and Rutherford's Atom. Archive for History of Exact Sciences 4: 247–307.

    Google Scholar 

  • Heilbron, J.L.: 1981, Historical Studies in the Theory of Atomic Structure. New York: Arno Press.

    Google Scholar 

  • Heilbron, J.L. and Th.S. Kuhn: 1969, The Genesis of the Bohr Atom. Historical Studies in the Physical Sciences 1: 211–290.

    Google Scholar 

  • Heisenberg, W.: 1930, The Physical Principles of the Quantum Theory. Dover Publications.

  • Heisenberg, W.: 1956, Die Entwicklung der Deutung der Quantentheorie. In W. Blum, H.P. Dürr and H. Rechenberg (eds.), Gesammelte Werke/Collected Works. München/Zürich: Piper 1984, Abteilung C/1: pp. 435–449.

    Google Scholar 

  • Heisenberg, W.: 1974, The Philosophical Background of Modern Physics. In W. Blum, H.P. Dürr and H. Rechenberg (eds.), Gesammelte Werke/Collected Works. München/Zürich: Piper 1985, Abteilung C/3: pp. 496–506. Howson, C. and P. Urbach: 21993, Scientific Reasoning. Chicago/La Salle, IL: Open Court.

    Google Scholar 

  • Kitcher, Ph.: 1993, The Advancement of Science. Oxford: Oxford University Press.

    Google Scholar 

  • Laymon, R.: 1994, Demonstrative Induction, Old and New Evidence and the Accuracy of the Electrostatic Inverse Square Law. Synthese 99: 23–58.

    Google Scholar 

  • Mackie, J.L.: 1980, The Cement of the Universe. Oxford: Clarendon Paperbacks.

    Google Scholar 

  • Maher, P.: 1996, Subjective and Objective Confirmation. Philosophy of Science 63: 149–174.

    Google Scholar 

  • Medawar, P.: 1984, Pluto's Republic. Oxford: Oxford University Press.

    Google Scholar 

  • Miller, D.: 1994, Critical Rationalism. Chicago/La Salle: Open Court.

    Google Scholar 

  • Moseley, H.G.J.: 1913, The High-Frequency Spectra of the Elements. Philosophical Magazine 26: 1024–1034.

    Google Scholar 

  • Moseley, H.G.J.: 1914, The High-Frequency Spectra of the Elements. Part II. Philosophical Magazine 27: 703–713.

    Google Scholar 

  • Nilsson, Dan-E. and S. Pelger: 1994, A Pessimistic Estimate of the Time Required for an Eye to Evolve. Proc. of the Royal Society of London ser. B, 256: 53–58, reprinted in M. Ridley (ed.) (1997), Evolution.Oxford: Oxford University Press, pp. 293-301.

  • Norton, J.D.: 1993, The Determination of Theory by Evidence: The Case for Quantum Discontinuity, 1900-1915. Synthese 97: 1–31.

    Google Scholar 

  • Norton, J.D.: 1994, Science and Certainty. Synthese 99: 3–22.

    Google Scholar 

  • Norton, J.D.: 1995, Eliminative Induction as a Method of Discovery: How Einstein Discovered General Relativity. In J. Leplin (ed.), The Creation of Ideas in Physics. Dordrecht: Kluwer, pp. 29–69.

    Google Scholar 

  • Pais, A.: 1982, Subtle is the Lord. Oxford: Oxford University Press.

    Google Scholar 

  • Pais, A.: 1986, Inward Bound. Oxford: Clarendon Press.

    Google Scholar 

  • Pais, A.: 1991, Niels Bohr's Times. Oxford: Clarendon Press.

    Google Scholar 

  • Peddie, W.: 1914, On the Structure of the Atom. Philosophical Magazine 27: 257–268.

    Google Scholar 

  • Planck, M.: 1900, Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verhandlungen der Deutschen Physikalischen Gesellschaft 2: 202.

    Google Scholar 

  • Popper, K.R: 1959, The Logic of Scientific Discovery. London: Hutchinson.

    Google Scholar 

  • Popper, K.R.: 1963, Conjecture and Refutation. London: Routledge.

    Google Scholar 

  • Popper, K.R.: 1972, Objective Knowledge. Oxford: Clarendon Press.

    Google Scholar 

  • Popper, K.R.: 1994, Science: Problems, Aims, Responsibilities. In M.A. Notturno (ed.), The Myth of the Framework. London: Routledge, pp. 82–111.

    Google Scholar 

  • Radnitzky, G.: 1979, Justifying a Theory versus Giving Good Reasons for Preferring a Theory. In G. Radnitzky and G. Anderson (eds.), The Structure and Development of Science. Dordrecht: Reidel, pp. 213–256.

    Google Scholar 

  • Riegler, A.: 2001, The Role of Anticipation in Cognition. In D.M. Dubois (ed.), Computing Anticipatory Systems. Proceedings of the American Institute of Physics (in press).

  • Rutherford, E.: 1962-1965, The Collected Papers of Lord Rutherford of Nelson. Published under the Scientific Direction of Sir James Chadwick. London: George Allen and Unwin, 3 Volumes.

    Google Scholar 

  • Rutherford, E.: 1902, The Existence of Bodies Smaller than Atoms. Vol.I: 402–409.

    Google Scholar 

  • Rutherford, E.: 1903, Excited Radioactivity and the Method of its Transmission. Vol. I: 529–548.

    Google Scholar 

  • Rutherford, E.: 1906, Mass and Velocity of α Particles Expelled from Radium and Actinium. Vol. I: 880–900.

    Google Scholar 

  • Rutherford, E.: 1911a, The Scattering of α and β Rays and the Structure of the Atom. Vol. II: 212–213.

    Google Scholar 

  • Rutherford, E.: 1911b, The Scattering of α and β Particles by Matter and the Structure of the Atom. Vol. II: 238–254.

    Google Scholar 

  • Rutherford, E.: 1913, The Structure of the Atom. Vol. II: 409.

    Google Scholar 

  • Rutherford, E.: 1914, The Structure of Atoms and Molecules. Vol. II: 471–472.

    Google Scholar 

  • Rutherford, E.: 1920, Nuclear Constitution of Atoms. Vol. III: 14–38.

    Google Scholar 

  • Rutherford, E.: 1927, Atomic Nuclei and their Transformations. Vol. III: 164–179.

    Google Scholar 

  • Schulte, O.: 1999, Means-Ends Epistemology. Brit. J. Phil. Sci. 50: 1–31.

    Google Scholar 

  • Solomon, J.: 1973, The Structure of Matter. Newton Abbot: David and Charles.

    Google Scholar 

  • Thomson, J.J.: 1903, The Magnetic Properties of Systems of Corpuscles describing Circular Orbits. Philosophical Magazine 6: 673–692.

    Google Scholar 

  • Thomson, J.J.: 1904, On the Structure of the Atom. Philosophical Magazine 7: 237–265.

    Google Scholar 

  • Thomson, J.J.: 1906, On the Nature of Corpuscles in an Atom. Philosophical Magazine 11: 769–781.

    Google Scholar 

  • Thomson, J.J.: 1913, On the Structure of the Atom. Philosophical Magazine 26: 792–799.

    Google Scholar 

  • van den Broek, A.: 1913, Die Radioelemente, das periodische System und die Konstituenten der Atome. Physikalische Zeitschrift XIV: 32–41.

    Google Scholar 

  • van Fraassen, B.: 1980, The Scientific Image. Oxford: Clarendon Press.

    Google Scholar 

  • van Fraassen, B.: 1970, Introduction to the Philosophy of Time. New York: Random House.

    Google Scholar 

  • van Fraassen, B.: 1991, Quantum Mechanics. Oxford: Clarendon.

    Google Scholar 

  • Vineberg, S.: 1996, Eliminative Induction and Bayesian Confirmation Theory. Canadian Journal of Philosophy 26: 257–266.

    Google Scholar 

  • Wächtershäuser, G.: 1995, The Uses of Karl Popper. In A. O'Hear (ed.), Karl Popper: Philosophy and Problems. Royal Institute of Philosophy Supplement 39. Cambridge: CUP, pp. 177–189.

    Google Scholar 

  • Weinberg, S.: 1993, The Discovery of Subatomic Particles. London: Penguin Books.

    Google Scholar 

  • Weinert, F.: 1995, Wrong Theory - Right Experiment: The Significance of the Stern-Gerlach Experiments. Studies in History and Philosophy of Modern Physics 26: 75–86.

    Google Scholar 

  • Weinert, F.: 1998, Fundamental Physical Constants, Null Experiments and the Duhem-Quine Thesis. Philosophia Naturalis 35: 225–251.

    Google Scholar 

  • Weinert, F.: 1999, Theories, Models and Constraints. Studies in History and Philosophy of Science 30: 303–333.

    Google Scholar 

  • Worrall, J.: 1985, Scientific Discovery and Theory Confirmation. In J.C. Pitt (ed.), Change and Progress in Modern Science. Dordrecht: D. Reidel, pp. 301–331.

    Google Scholar 

  • Worrall, J.: 1989, Fresnel, Poisson and the White Spot: The Role of Successful Predictions in the Acceptance of Scientific Theories. In D. Gooding, T. Pinch and S. Schaffer (eds.), The Uses of Experiment. Cambridge: CUP, pp. 135–157.

    Google Scholar 

  • Worrall, J.: 2000, The Scope, Limits and Distinctiveness of the Method of “Deduction from the Phenomena”: Some Lessons from Newton's “Demonstrations” in Optics. Brit. J. Phil. Sci. 51: 45–80.

    Google Scholar 

  • Zimmermann, E.J.: 1968, Time and Quantum Mechanics. In: J.T. Fraser (ed), The Voices of Time. London: Allen Lane The Penguin Press, pp. 479–499.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinert, F. The Construction of Atom Models: Eliminative Inductivism and its Relation to Falsificationism. Foundations of Science 5, 491–531 (2000). https://doi.org/10.1023/A:1011315710119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011315710119

Navigation