Environmental Monitoring and Assessment

, Volume 64, Issue 1, pp 391-407

First online:

Spatial Extent of Sediment Toxicity in U.S. Estuaries and Marine Bays

  • Edward R. LongAffiliated withNational Oceanic and Atmospheric AdministrationNational Ocean ServiceNational Centers for Coastal Ocean Science

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Acute, laboratory toxicity tests were performed by the National Oceanic and Atmospheric Administration (NOAA) on 1543 surficial sediment samples collected during 1991 through 1997 throughout 25 estuaries and marine bays. Selected areas were sampled along the Atlantic, Gulf of Mexico, and Pacific coasts. The toxicity of each sample was determined with 10-day amphipod survival tests performed with solid-phase (bulk) sediments. Collectively, the 1543 samples tested through 1997 represented a total area of approximately 7300 km2. Toxicity was observed with the amphipod survival tests in samples that represented approximately 6% of the combined area. Using similar tests conducted on samples collected in different, but overlapping, study areas, the U.S. Environmental Protection Agency (EPA) estimated that approximately 7% of the combined estuarine area sampled was toxic. Generally, toxicity was most severe in northeastern and southwestern estuaries and least prevalent in southeastern and northwestern areas. However, considerable portions of the Pacific coast have not been tested with the same methods. In tests of CYP1A enzyme induction (n=464), samples were toxic that represented about 5% of the combined study areas. Toxicity was much more widespread, however, when the results of two sub-lethal tests were analyzed. Significant results occurred in samples that represented approximately 25% and 39% of the study areas in tests of sea urchin fertilization (n=1309) and microbial bioluminescence (n=1215), respectively.

sediment quality estuaries sediment contamination sediment toxicity benthic resources toxicity tests