Skip to main content
Log in

Comparisons Between Laboratory Sediment Toxicity Test Results and Assessment of Benthic Community Changes for a Lake with Mild Metal Contamination

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Effects of moderate-to-severe sediment contamination may be readily discernable in both sediment toxicity bioassays and benthic community assessments. However, the impact may be less obvious under conditions of relatively mild contamination and significant variation of natural environmental variables. This study evaluated sediment toxicity and benthic community impacts for a shallow eutrophic lake system with relatively low levels of sediment metal contamination. We evaluated selected sediment physical and chemical properties, as well as benthic community structure, for 50 sites along a sediment Pb contamination gradient in the lake. We tested the toxicity of sediment from 20 of the sites, using a standardized 42-days sediment bioassay with Hyalella azteca survival, reproduction, and growth endpoints. Using principal component and correlation analyses we found negative relationships for both Pb and Cu, between sediment metal concentrations and the diversity and abundance of benthic macroinvertebrates. Taxa known to be metal-sensitive (e.g., Hyalella sp. and Physa sp.) were less abundant at sites with relatively higher Pb and Cu concentrations. However, amphipod performance in the chronic toxicity test was not related to sediment Pb or Cu concentrations (but was influenced by sediment organic content). Our results demonstrate that an assessment of community-level effects may be warranted even when sediment metal concentrations are too low to elicit detectable toxic effects in standardized laboratory tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allert AL, DiStefano RJ, Fairchild JF, Schmitt CJ, McKee MJ, Girondo JA, Brumbaugh WG, May TW (2013) Effects of historical lead–zinc mining on riffle-dwelling benthic fish and crayfish in the Big River of southeastern Missouri, USA. Ecotoxicology 22:506–521. https://doi.org/10.1007/s10646-013-1043-3

    Article  CAS  Google Scholar 

  • Artigas J, Arts G, Babut M, Caracciolo AB, Charles S, Chaumot A, Combourieu B, Dahllöf I, Despréaux D, Ferrari B, Friberg N, Garric J, Geffard O, Gourlay-Francé C, Hein M, Hjorth M, Krauss M, De Lange HJ, Lahr J, Lehtonen KK, Lettieri T, Liess M, Lofts S, Mayer P, Morin S, Paschke A, Svendsen C, Usseglio-Polatera P, van den Brink N, Vindimian E, Williams R (2012) Towards a renewed research agenda in ecotoxicology. Environ Pollut 160:201–206. https://doi.org/10.1016/j.envpol.2011.08.011

    Article  CAS  Google Scholar 

  • Beketov MA, Liess M (2012) Ecotoxicology and macroecology - time for integration. Environ Pollut 162:247–254. https://doi.org/10.1016/j.envpol.2011.11.011

    Article  CAS  Google Scholar 

  • Borgmann U, Norwood WP (1999) Assessing the toxicity of lead in sediments to Hyalella azteca: the significance of bioaccumulation and dissolved metal. Can J Fish Aquat Sci 56:1494–1503

    CAS  Google Scholar 

  • Borgmann U, Norwood WP, Reynoldson TB, Rosa F (2001) Identifying cause in sediment assessments: bioavailability and the Sediment Quality Triad. Can J Fish Aquat Sci 58:950–960

    Article  CAS  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B Methodol 26:211–252

    Google Scholar 

  • Burton GA (2013) Assessing sediment toxicity: past, present, and future. Environ Toxicol Chem 32:1438–1440

    Article  CAS  Google Scholar 

  • Clements WH, Carlisle DM, Lazorchak JM, Johnson PC (2000) Heavy metals structure benthic communities in Colorado mountain streams. Ecol Appl 10:626–638

    Article  Google Scholar 

  • De Lange HJ, De Haas EM, Maas H, Peeters ETHM (2005) Contaminated sediments and bioassay responses of three macroinvertebrates, the midge larva Chironomus riparius, the water louse Asellus aquaticus and the mayfly nymph Ephoron virgo. Chemosphere 61:1700–1709. https://doi.org/10.1016/j.chemosphere.2005.03.083

    Article  CAS  Google Scholar 

  • Feio MJ, Reynoldson TB, Graça MAS (2006) The influence of taxonomic level on the performance of a predictive model for water quality assessment. Can J Fish Aquat Sci 63:367–376. https://doi.org/10.1139/f05-221

    Article  Google Scholar 

  • Field LJ, Norton SB (2014) Regional models for sediment toxicity assessment. Environ Toxicol Chem 33:708–717

    Article  CAS  Google Scholar 

  • Hesslein R, Broecker W, Schindler D (1980) Fates of metal radiotracers added to a whole lake: sediment-water interactions. Can J Fish Aquat Sci 37:378–386

    Article  CAS  Google Scholar 

  • Höss S, Ahlf W, Fahnenstich C, Gilberg D, Hollert H, Melbye K, Meller M, Hammers-Wirtz M, Heininger P, Neumann-Hensel H, Ottermanns R, Ratte HT, Seiler TB, Spira D, Weber J, Feiler U (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination—determination of toxicity thresholds. Environ Pollut 158:2999–3010. https://doi.org/10.1016/j.envpol.2010.05.013

    Article  CAS  Google Scholar 

  • Ingersoll CG, Wang N, Hayward JMR, Jones JR, Jones SB, Ireland DS (2005) A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca. Environ Toxicol Chem 24:2853–2870. https://doi.org/10.1897/04-393R.1

    Article  CAS  Google Scholar 

  • Keddy PA, Fraser LH, Solomeshch AI, Junk WJ, Campbell DR, Arroyo MTK, Alho CJR (2009) Wet and wonderful: the world’s largest wetlands are conservation priorities. Bioscience 59:39–53

    Article  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Malaeb Z (1997) A SAS® code to correct for non-normality and non-constant variance in regression and anova models using the Box–Cox method of power transformation. Environ Monitor Assess 47:255–273. https://doi.org/10.1023/A:1005798521296

    Article  CAS  Google Scholar 

  • Malaj E, Grote M, Schäfer RB, Brack W, von der Ohe PC (2012) Physiological sensitivity of freshwater macroinvertebrates to heavy metals. Environ Toxicol Chem 31:1754–1764. https://doi.org/10.1002/etc.1868

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Hamer B, Roméo M, Géret F, Galgani F, Durmiši E, Hurel C, Marmier N (2011) The toxicity of composted sediments from Mediterranean ports evaluated by several bioassays. Chemosphere 82:362–369. https://doi.org/10.1016/j.chemosphere.2010.10.005

    Article  CAS  Google Scholar 

  • Maret T, Cain D, MacCoy D, Short T (2003) Response of benthic invertebrate assemblages to metal exposure and bioaccumulation associated with hard-rock mining in northwestern streams, USA. J N Am Benthol Soc 22:598–620

    Article  Google Scholar 

  • Maxon CL, Barnett AM, Diener DR (1997) Sediment contaminants and biological effects in southern California: use of a multivariate statistical approach to assess biological impact. Environ Toxicol Chem 16:775–784

    Article  CAS  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Milani D, Reynoldson TB, Borgmann U, Kolasa J (2003) The relative sensitivity of four benthic invertebrates to metals in spiked-sediment exposures and application to contaminated field sediment. Environ Toxicol Chem 22:845–854

    Article  CAS  Google Scholar 

  • Mueller M, Pander J, Geist J (2013) Taxonomic sufficiency in freshwater ecosystems: effects of taxonomic resolution, functional traits, and data transformation. Freshwat Sci 32:762–778. https://doi.org/10.1899/12-212.1

    Article  Google Scholar 

  • Muñoz I, López-Doval JC, Ricart M, Villagrasa M, Brix R, Geiszinger A, Ginebreda A, Guasch H, de Alda MJL, Romaní AM, Sabater S, Barceló D (2009) Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat River basin (northeast Spain). Environ Toxicol Chem 28:2706–2714. https://doi.org/10.1897/08-486.1

    Article  Google Scholar 

  • Nowierski M, Dixon D, Borgmann U (2005) Effects of water chemistry on the bioavailability of metals in sediment to Hyalella azteca: implications for sediment quality guidelines. Arch Environ Contam Toxicol 49:322–332

    Article  CAS  Google Scholar 

  • Oguma AY, Klerks PL (2015) Evidence for mild sediment Pb contamination affecting leaf-litter decomposition in a lake. Ecotoxicology 24:1322–1329

    Article  CAS  Google Scholar 

  • Oguma AY, Klerks PL (2017) Pollution-induced community tolerance in benthic macroinvertebrates of a mildly lead-contaminated lake. Environ Sci Pollut Res 24:19076–19085

    Article  CAS  Google Scholar 

  • Phipps GL, Mattson VR, Ankley GT (1995) Relative sensitivity of three freshwater benthic macroinvertebrates to ten contaminants. Arch Environ Contam Toxicol 28:281–286

    Article  CAS  Google Scholar 

  • Pennak RW (1989) Freshwater invertebrates of the United States, 3rd edn. Wiley, New York

    Google Scholar 

  • Roman YE, De Schamphelaere KA, Nguyen LT, Janssen CR (2007) Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment. Sci Total Environ 387:128–140

    Article  CAS  Google Scholar 

  • Sánchez-Bayo F, Goka K (2012) Evaluation of suitable endpoints for assessing the impacts of toxicants at the community level. Ecotoxicology 21:667–680

    Article  Google Scholar 

  • Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. EPA/NCEA-C-1282 EMASC-001. Washington, DC

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Strom D, Simpson SL, Batley GE, Jolley DF (2011) The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environ Toxicol Chem 30:1599–1610

    Article  CAS  Google Scholar 

  • USEPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd edn, EPA 600/R-99/064. Washington, DC

  • USEPA (2001) Methods for collecting, storage and manipulation of sediments for chemical and toxicological analyses: technical manual. EPA 823-B-01-002. Washington, DC

  • USEPA (2005) Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (cadmium, copper, lead, nickel, silver, and zinc. EPA-600-R-02-011. Washington, DC

  • Vandegehuchte MB, Nguyen LT, De Laender F, Muyssen BT, Janssen CR (2013) Whole sediment toxicity tests for metal risk assessments: on the importance of equilibration and test design to increase ecological relevance. Environ Toxicol Chem 32:1048–1059

    Article  CAS  Google Scholar 

  • Wang F, Goulet RR, Chapman PM (2004) Testing sediment biological effects with the freshwater amphipod Hyalella azteca: the gap between laboratory and nature. Chemosphere 57:1713–1724. https://doi.org/10.1016/j.chemosphere.2004.07.050

    Article  CAS  Google Scholar 

  • Wang N, Ingersoll CG, Kunz JL, Brumbaugh WG, Kane CM, Evans RB, Alexander S, Walker C, Bakaletz S (2013) Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates. Environ Toxicol Chem 32:207–221

    Article  CAS  Google Scholar 

  • Watzin MC, McIntosh AW, Brown EA, Lacey R, Lester DC, Newbrough KL, Williams AR (1997) Assessing sediment quality in heterogeneous environments: a case study of a small urban harbor in Lake Champlain, Vermont, USA. Environ Toxicol Chem 16:2125–2135. https://doi.org/10.1002/etc.5620161020

    Article  CAS  Google Scholar 

  • Wilson JT (2003) Occurrence of and trends in selected sediment-associated contaminants in Caddo Lake, east Texas, 1940-2002. Water-Resources Investigations Report 03-4253. U.S. Geological Survey, Washington, DC, USA

Download references

Acknowledgements

The authors thank the Ecology Center and the Graduate Student Organization of the University of Louisiana at Lafayette for funding. Thanks to Amber Oguma, Marvin “Trey” Mace III, Courtney Curtis, and Stephen “Mitch” Wagener for assistance in field work, benthic sample sorting, and identifications. Thanks to Paul Leberg for advice on statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Klerks.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguma, A.Y., Klerks, P.L. Comparisons Between Laboratory Sediment Toxicity Test Results and Assessment of Benthic Community Changes for a Lake with Mild Metal Contamination. Arch Environ Contam Toxicol 78, 106–116 (2020). https://doi.org/10.1007/s00244-019-00692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-019-00692-z

Navigation