Skip to main content
Log in

Mycorrhizal weathering: A true case of mineral plant nutrition?

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Weatherable minerals in all podzol surface soils andshallow granitic rock under European coniferousforests studied hitherto are criss-crossed bynumerous open, tubular pores, 3–10 µm in width. Wehypothesize that these pores were formed bycomplex-forming, low-molecular weight organic acidsexuded by or formed in association with mycorrhizalfungi. It is well known that ectomycorrhizal myceliumrepresents a greatly extended, and better distributed,surface area for the absorption of nutrients. However, there have been few investigations of how thewhereabouts of individual hypha affect nutrientuptake. The results presented here provide directevidence that the mycelium is able to penetrate, andmost probably create, microsites which areinaccessible to plant roots and isolated from bulksoil solution phenomena. Dissolved products could betranslocated to the host plant roots, bypassing thesoil solution with often toxic concentration ofAl3+ from acid rain, and bypassing competitionfor nutrient uptake by other organisms. Furthermore,there is strong evidence that ``rock-eating''mycorrhizal fungi play a role in the formation ofpodzol E horizons. The partly speculativeinterpretations presented here challenge conventionalideas about (1) the importance of nutrient uptakefrom the bulk soil solution (2) criteria for criticalloads of acid atmospheric deposition for forests, and(3) the process of podzolization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bååth E (1980) Soil fungal biomass after clear-cutting of a pine forest in central Sweden. Soil Biol. & Biochem. 12: 495–500

    Google Scholar 

  • Bååth E, Lundgren B & Söderström B (1984) Fungal populations in podzolic soil experimentally acidified to simulate acid rain. Microbial. Ecology 10: 197–203

    Google Scholar 

  • BarkerWW, Welch SA & Banfield JF (1997) Biogeochemical weathering of silicate minerals. In: Banfield JF and Nealson KH (Eds) G Interactions between Microbes and Minerals (pp 391–429). Reviews in Mineralogy, Vol. 35. Mineralogical Soc. America, Washington DC, U.S.A.

    Google Scholar 

  • Björkman E (1949) The ecological significance of ectotrophic mycorrhizal associations in forest trees. Svensk Botanisk Tidskrift 38: 1–14

    Google Scholar 

  • Blum AE & Stillings LL (1995) Chemical weathering rates of silicate minerals. In White AF & Brantley SL (Eds) Reviews in Mineralogy, Vol 31(pp 291–551). Mineralogical Soc. Amer., Washington DC, U.S.A.

    Google Scholar 

  • Boyle JR & Voigt GK (1973) Biological weathering of silicate minerals, implications for tree nutrition and soil genesis. Plant & Soil 38: 191–201

    Google Scholar 

  • Van Breemen N, Lundström US & Jongmans AG (submitted) Do plants drive podzolization via rock-eating ectomycorrhizal fungi? Geoderma

  • Bruckert S (1970) Influence des composJs organiques solubles sur la pédogénèse en milieu acide. I. Etudes de terrain. Annales Agronomiques 21: 421–452

    Google Scholar 

  • Callot G, Maurette M, Pottier L & Dubois A (1987) Biogenic etching of microfeatures in amorphous and crystalline silicates. Nature 328: 147–149

    Google Scholar 

  • Cromack Jr K, Sollins P, Graustein WC, Speidel K, Todd AW, Spycher G, Li CY & Todd, RL (1979) Calcium oxalate accumulations and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol. Biochem. 11: 463–468

    Article  Google Scholar 

  • Degermark C (1995) Climate and chemistry of water. Reference measurement 1986–1995, SLU, Vindels Expt St., Vindels, Sweden [In Swedish]

    Google Scholar 

  • Devêvre O, Garbaye J and Botton B (1996) Release of complexing organic acids by rhizosphere fungi as a factor in Norway spruce yellowing in acidic soils. Mycol. Res. 100: 1367–1374

    Google Scholar 

  • El Gibaly MH, El Reweiny FM, Abdel-Nasser M & El Dahtory TA (1997) Studies of phosphate-solubilizing bacteria in soil rhizosphere of different plants. Occurrence of bacterial acid producers and phosphate dissolvers. Zentralbl. Bakt. Parasit. Infek. Hyg. 132: 233–239

    Google Scholar 

  • Entry JA, Rose CL & Cromack K Jr (1991) Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas fir ecosystem. Soil Biol. Biochem. 23: 185–290

    Google Scholar 

  • Falkengren-Grerup U & Eriksson H (1990) Changes in soil, vegetation and forest yield between 1947 and 1988 in beech and oak sites of southern Sweden. For. Ecol. Manege. 38: 37–53

    Google Scholar 

  • Finlay RD (1993) in Mycorrhiza in Ecosystems. In Read DJ, Lewis DH, Fitter AH & Alexander IJ (Eds) Proceedings 3rd European Symposium on Mycorrhizas, CAB International (pp 91–97)

  • Fitzpatrick EA (1970) A technique for the preparation of large thin sections of soils and consolidated material. In DA Osmond & P. Bullock (ed.) Micromorphological Techniques and Application (pp 3–13). Tech. Monogr. 2. Soil Survey of England and Wales, Rotthamsted Exp. Stn. Harpenden

  • Frey P, Frey-Klett P, Garbaye J, Berge O and Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas fir Laccaria bicolor mycorrhizosphere. Appl. and Environ. Microbiol. 63: 1852–1860

    Google Scholar 

  • Frey-Klett P, Pierrat JC & Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Applied and Environmental Microbiology 63: 139–144

    Google Scholar 

  • Giesler R, Ilvesniemi H, Nyberg L, van Hees P, Starr M, Bishop K, Kareinen T & Lundström US (in press) Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. Geoderma

  • Giesler R & Lundström US (1993) Soil solution chemistry: effect of bulking soil samples. Soil Sci. Soc. Am. J. 57: 1283–1288

    Google Scholar 

  • Graustein WC, Cromack K Jr & Sollins P (1977) Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science 198: 1252–1254

    Google Scholar 

  • Griffiths RP, Baham JE & Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol. Biochem. 26: 331–337

    Article  Google Scholar 

  • Van Hees PAW, Dahlen J, Lundström US, Borén H & Allard B (in press) Determination of low molecular weight organic acids in soil solution by HPLC. Talanta 48: 173–179

  • Van Hees PAW, Lundström US & Giesler R (in press) Low molecular weight acids and their Al-complexes in soil solutions-Composition, distribution and seasonal variation in three podzolized soils. Geoderma

  • Jongmans AG, Van Breemen N, Lundström US, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A & Olsson M (1997) Rock-eating fungi. Nature 389: 682–683

    Article  Google Scholar 

  • Kauppi PE, Meilikainen K, & Kuusela K (1992). Biomass and carbon budget of European forests. Science 256: 70–74

    Google Scholar 

  • Kubin E (1983) Nutrients in the soil, ground vegetation and tree layer in an old spruce forest in Northern Finland. Ann. Bot. Finn. 20: 361–390

    Google Scholar 

  • Lawrence GB & David MB (1996) Chemical evaluation of soil-solution in acid forest soils. Soil Science 161: 298–313

    Google Scholar 

  • Leyval C & Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine Soil Sci. Soc. Am. J. 55: 1009–1016

    Google Scholar 

  • Lundström US (1993) The role of organic acids in the solution chemistry of a podzolized soil. J. Soil Sci. 41: 359–369

    Google Scholar 

  • Lundström US, Van Breemen N & Jongmans AG (1995) Evidence for microbial decomposition of organic acids during podzolization. Eur. J. Soil Sci. 46: 489–496

    Google Scholar 

  • Markewitz D & Richter DD (1997) The bio in aluminium and silicon geochemistry. Biogeochemistry 42: 235–252

    Google Scholar 

  • Melkerud P-A (1989) Weathering; its products and deposits. In Augustithis SS (Ed.) (pp 307–305). Theoophrastus Publ., S.A. Athens, Greece

    Google Scholar 

  • Mikola P, Hahl J & Torniainen E (1966) Vertical distribution of mycorrhizae in pine forests with spruce undergrowth. Ann. Bot. Fenn. 3: 406–409

    Google Scholar 

  • Mulder J, Van Breemen N & van Eijck HC (1989) Depletion of soil aluminium by acid deposition and implications for acid neutralization. Nature 337: 247–249

    Google Scholar 

  • Nickel E (1973) Experimental dissolution of light and heavy minerals in comparison with weathering and intrastitial solution. Contrib. Sediment 1: 1–68

    Google Scholar 

  • Posch M, Hettelingh J-P, de Smet PAM & Downing RJ (1997) Calculation and mapping of critical thresholds in Europe. CCE Status Report 1997 RIVMN, National Institute of Public Health and the Environment, Bilthoven, the Netherlands

    Google Scholar 

  • Van Reeuwijk LP (1995) Procedures for soil analysis. Techn. Paper 7. International Soil Reference and Information Centre, Wageningen, The Netherlands

    Google Scholar 

  • Robert M & Berthelin J (1986) Role of biological and biochemical factors in soil mineral weathering. In Huang PM & Schnitzer M (Eds) Interactions of Soil Minerals with Natural Organics and Microbes (pp 453–495). SSSA Special Publ. No. 17, Soil Sci. Soc. Amer., Inc., Madison, Wisconsin

    Google Scholar 

  • Rost-Siebert K (1985) Untersuchungen zur H-und Al Ionentoxizität an Keimpflanzen von Fichte (Picea abies, Karst.) und Buche (Fagus sylvatica L.) in Lösungskultur. Berichte Forschungszentrum Waldökosysteme/ Waldsterben, Göttingen, Germany, Vol. 12

    Google Scholar 

  • Rustad LE & Cronan CS (1995) Biogeochemical controls on aluminum chemistry in the O horizon of a red spruce (Picea rubens Sarg.) stand in central Maine, U.S.A. Biogeochemistry 29: 107–129

    Google Scholar 

  • Schützel H, Kutschke D & Wildner G (1963) Zur Problematik der Genese Grauen Gneise des Sächsischen Erzgebirges (Zirkonstatistische Untersuchungen) (pp 1–65). Freiberger Forschungshefte C159, Mineralogie

  • Smith SE & Read DJ (1997) Mycorrhizal Symbiosis, 2nd edn. Academic Press

  • Söderström B (1977) Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol. Biochem. 9: 59–63

    Google Scholar 

  • Söderström BE (1979) Seasonal fluctuations of active fungal biomass in horizons of a podzolized pine-forest soil in central Sweden. Soil Biol. Biochem. 11: 149–154

    Google Scholar 

  • Staaf H, Persson T & Bertills U (ed) (1996) Skogsmarkskalkning Report No. 4559, Swedish Environmental Protection Agency, Stockholm

    Google Scholar 

  • Sun Y-P, Unestam T, Lucas SD, Johanson KJ, Kenne KJ & Finlay R (1999) Exudationreabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza 00: 000–000

    Google Scholar 

  • Sverdrup H & de Vries W (1994) Calculating critical loads for acidity with the simple mass balance method. Water Air and Soil Pollution 72: 143–162

    Google Scholar 

  • De Vries, W, Reinds GL & Posch M (1994) Assessment of critical loads and their exceedance on European forests using a one-layer steady-state model. Water Air and Soil Poll. 72: 357–394

    Google Scholar 

  • Wallander H, Wickman T & Jacks G (1997) Apatite as a source of mycorrhizal and nonmycorrhizal Pinus sylvestris. Plant & Soil 196: 123–131

    Google Scholar 

  • Wesselink LG (1994) Time Trends and Mechanisms of Soil Acidification. PhD Dissertation, Wageningen Agricultural University, The Netherlands

    Google Scholar 

  • Wickman T & Wallander H (1996) Biotite or microcline as a potassium source in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. In “Weathering assessment and nutrient availability in coniferous forests”, PhD Thesis, Royal Inst Techn.

  • Zak DR and Pregitzer KS (1998) Integration of ecophysiological and biogeochemical approaches to ecosystem dynamics. In Pace ML & Groffman PM (Eds) Successes, Limitations and Frontiers in Ecosystem Science (pp 372–403). Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Breemen, N., Finlay, R., Lundström, U. et al. Mycorrhizal weathering: A true case of mineral plant nutrition?. Biogeochemistry 49, 53–67 (2000). https://doi.org/10.1023/A:1006256231670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006256231670

Navigation