Skip to main content
Log in

Finite element study of the fibre–matrix interface behaviour of [10°/90°] laminated composites under tensile loading

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A three-dimensional unit cell has been developed and modelled using the finite element method to investigate the interface failure behaviour of SiCf/Si3N4 composites under tensile loading at room and elevated temperatures. The model idealizes the composite as a regular rectangular array of fibres in 0° and 90° orientations embedded in the matrix. It introduces three-dimensional contact elements between the fibre and the matrix to simulate the interface conditions between the two phases. Slippage between 0° and 90° layers is also considered by introducing another set of contact elements at the layer separation planes. Two interface conditions, namely, infinitely strong and weakly bonded, are considered to establish the correlation with the experimental data. To simulate the weak interface, the fibre and the matrix are assumed to slide over one another with shear stress through the Coulomb mechanism. The same assumption has been adopted for the layer separation planes. A finite element model utilizing these concepts has been developed. Stress–strain behaviour and the local stress distributions at various ambient temperatures within the unit cell, are presented. The investigation has also been extended to include the effects of residual stresses in the finite element model. It is shown that the model yields results that correlated reasonably well with the experimental data. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. MAHFUZ, U. VAIDYA, M. MANIRUZZAMAN, T. BROWN and S. JEELANI, in “19th Annual Conference, American Ceramic Society (ACerS)”, edited by J. B. Wachma Vol. 16,No. 4 (1995) pp. 351-60, Westerville, Ohio 43081.

  2. C. Q. ROUSSEAU, in “Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites”, ASTM STP 1080, edited by J. M. Kennedy, H. H. Moeller and W. S. Johnson (American Society of Testing and Materials, Philadelphia, PA, 1990) pp. 136-51.

    Google Scholar 

  3. JOHN J. PETEROVIC and GEORGE F. HURLEY, “Fiber Reinforced Ceramic Composites”, edited by K. S. Mazdiyasni (Noyes, Publications 1990, NJ) pp. 93-121.

    Google Scholar 

  4. RONALD J. KERANS, RANDALL S. HAY and NICHOLAS J. PAGANO, Am. Ceram. Soc. Ceram. Bull. 68 (1989) 429.

    Google Scholar 

  5. MILIVOJ K. BRUN, J. Am. Ceram. Soc. 75 (1992) 1914.

    Google Scholar 

  6. W. WARREN (Ed.), “Ceramic Matrix Composites” (Chapman and Hall, New York, NY, 1992) pp. 64-111.

    Google Scholar 

  7. D. C. CRANMER, U. V. DESHMUKH and T. W. COYLE, in “Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites”, ASTM STP 1080, edited by J. M. Kennedy, H. H. Moeller and W. S. Johnson (American Society of Testing and Materials, Philadelphia, PA, 1990) pp. 124-135.

    Google Scholar 

  8. H. MAHFUZ, A. K. M. A. MIAN, U. K. VAIDYA, T. D. BROWN and S. JEELANI, in “MRS Fall Meeting”, Materials Research Society Symposium Proceedings, (eds) Richard A. Lorrden, Pittsburgh, PA, Materials Research Society, Vol. 365 (MRS, 1994) pp. 229-36.

    Google Scholar 

  9. E. S. FOLIAS, J. Compos. Mater. 25 (1991) 869.

    Google Scholar 

  10. H. MAHFUZ, D. XUE and S. JEELANI, Compos. Sci. Technol. 50 (1994) 411.

    Google Scholar 

  11. P. PLUVINAGE and J. M. QUENISSET, J. Compos. Mater. 27(2) (1993) 153.

    Google Scholar 

  12. B. G. SCHAFFER and D. F. ADAMS, J. Appl. Mech. 48 (1981) 859.

    Google Scholar 

  13. I. CARTIAN and RONALD F. GIBSON, in NCA-Vol. 18/DE-Vol. 80, “Materials for Noise and Vibration Control”, (Eds) P. K. Raju and Ronald F. Gibson (ASME, 1994) pp. 73-86.

  14. RONALD P. NIMMER, J. Compos. Technol. Res. 12(2) (1990) 65.

    Google Scholar 

  15. RONALD P. NIMMER, R. J. BANKERT, EDWARD S. RUSSEL, GARY A. SMITH and KENNARD P. WRIGHT, J. Compos. Technol. Res. 13(1) (1991) 3.

    Google Scholar 

  16. G. L. POVIRK and A. NEEDLEMAN, J. Eng. Mater. Technol. 115 (1993) 286.

    Google Scholar 

  17. P. KOHNKE, “ANSYS Engineering Analysis Systems-Theoretical Manual”, (Swanson Analysis Systems, Houston, PA, 1992).

    Google Scholar 

  18. R. D. COOK, “Concepts and Applications of Finite Element Analysis”, 2nd Edn (Wiley, New York, 1981).

    Google Scholar 

  19. O. C. ZIENKIEWICZ and R. L. TAYLOR, “The Finite Element Method”, 4th Edn, Vol. 1 (McGraw-Hill, New York, NY, 1989).

    Google Scholar 

  20. A. L. HIGHSMITH, D. SHIN and R. A. NAIK, in “Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites”, ASTM STP 1080, edited by J. M. Kennedy, H. H. Moeller and W. S. Johnson (American Society of Testing Materials, Philadelphia, PA, 1990) pp. 3-19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahfuz, H., Mian, A.K.M.A., Vaidya, U. et al. Finite element study of the fibre–matrix interface behaviour of [10°/90°] laminated composites under tensile loading. Journal of Materials Science 33, 2965–2973 (1998). https://doi.org/10.1023/A:1004358814805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004358814805

Keywords

Navigation