Skip to main content
Log in

The Stable Atmospheric Boundary Layer over an Antarctic ice Sheet

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Turbulence measurements up to 11-m height and longterm profile measurements up to 45-m height performed at the German Neumayer Station in Antarctica are used to investigate different components of turbulence closure schemes of the stable boundary layer. The results confirm the linear relationships for the universal functions of momentum and heat exchange in the stability range z/L < 0.8 ... 1, whereas the local scaling approach should be used above the surface layer. Furthermore, boundary-layer heights below 50 m are frequently observed at this coastal Antarctic site, mainly due to the influence of stability above the boundary layer. It is shown that the inclusion of this stability into parametrization relations is necessary to provide realistic equilibrium heights of the stable boundary layer. Two relations, based on different physical approaches, were successfully applied for the parametrization of the equilibrium height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akima, H.: 1970, ‘A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures', J. Assoc. Comp. Mach. 17, 589-602.

    Google Scholar 

  • Andrén, A.: 1995, ‘The Structure of Stably Stratified Atmospheric Boundary Layers. A Large-Eddy-Simulation Study', Quart. J. Roy. Meteorol. Soc. 48, 1690-1698.

    Google Scholar 

  • Ball, F. K.: 1956, ‘The Theory of Strong Katabatic Winds', Austral. J. Phys. 9, 373-386.

    Google Scholar 

  • Belitz, H.-J.: 1989, ‘Impuls-und Energietransporte über einem antarktischen Schelfeis', Reports of the Institute of Meteorol. and Climatol., Vol. 37, University of Hannover, 147 pp.

  • Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer', J. Atmos. Sci. 35, pp. 1427-1440.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Fluxprofile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181-189.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data', Techn. Papers, Vol. 19, CSIRO, Division of Meteorol. Physics, Aspendale, Australia 19, 21 pp. + tables.

    Google Scholar 

  • Derbyshire, S. H.: 1990, ‘Nieuwstadt's Stable Boundary Layer Revisited', Quart. J. Roy. Meteorol. Soc. 116, 127-158.

    Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships', Boundary-Layer Meteorol. 7, 363-372.

    Google Scholar 

  • Dynkerke, P. G.: 1991, ‘Radiation Fog: A Comparison of Model Simulation with Detailed Observations', Mon. Wea. Rev. 119, 324-341.

    Google Scholar 

  • Ekman, V. W.: 1905, ‘On the Influence of the Earth's Rotation on Ocean Currents', Arkiv. Mat. Astron. Fysik. 2(11), 1-53.

    Google Scholar 

  • Foken, T. and Wichura, B.: 1996, ‘Tools for Quality Assessment of Surface-Based Flux Measurements', Agric. For. Meteorol. 78, 83-105.

    Google Scholar 

  • Foken, T.: 1998, ‘The Turbulence Experiment FINTUREX at the Neumayer-Station/Antarctica', Reports of the German Weather Service, in press.

  • Forrer, J. and Rotach, M. W.: 1997, ‘On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet', Boundary-Layer Meteorol. 85, 111-136.

    Google Scholar 

  • Forrer, J. and Rotach, M. W.: 1997a, ‘Similarity in a Continuously Stable Boundary Layer', Amer. Meteorol. Soc., 12th Symposium on Boundary Layers and Turbulence, Conference Proceedings, American Meteorological Society, pp. 166-167.

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, U.K., 316 pp.

    Google Scholar 

  • Garratt, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Effects within and above the Nocturnal Boundary Layer', J. Atmos. Sci. 38, 2730-2746.

    Google Scholar 

  • Handorf, D.: 1996, ‘Parametrization of the Stable Boundary Layer over an Antarctic Ice Shelf’ (in German), Reports on Polar Research, AWI Bremerhaven 204, 133 pp.

  • Högström, U.: 1988, ‘Non-Dimensional Wind-and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation', Boundary-Layer Meteorol. 42, 55-78.

    Google Scholar 

  • Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in Stable Layers', Quart. J. Roy. Meteorol. Soc. 111, 793-815.

    Google Scholar 

  • King, J. C.: 1990, ‘Some Measurements of Turbulence over an Antarctic Ice Shelf', Quart. J. Roy. Meteorol. Soc. 116, 379-400.

    Google Scholar 

  • Kitaigorodskii, S. A.: 1960, ‘On the Computation of the Thickness of the Wind-Mixing Layer in the Ocean', Izv. AN SSSR. Ser. Geofiz. 3, 425-431.

    Google Scholar 

  • Kitaigorodskii, S. A.: 1988, ‘A Note on Similarity Theory for Atmospheric Boundary Layers in the Presence of Background Stable Stratification', Tellus 40A, 434-438.

    Google Scholar 

  • Kitaigorodskii, S. A. and Joffre, S. M.: 1988, ‘In Search of Simple Scaling for the Heights of the Stratified Atmospheric Boundary Layer', Tellus 40A, 419-433.

    Google Scholar 

  • König, G.: 1985, ‘Roughness Length of an Antarctic Ice Shelf', Polarforschung 55, 27-32.

    Google Scholar 

  • Kottmeier, C.: 1986, ‘Shallow Gravity Flows over the Ekström Ice Shelf', Boundary-Layer Meteorol. 35, 1-20.

    Google Scholar 

  • Kottmeier, C. and Belitz, H.-J.: 1987, ‘Meteorological Research Using a High Mast on the Antarctic Ice Shelf', Marine Technology 1, 5-10.

    Google Scholar 

  • Lettau, H.: 1971, ‘Antarctic Atmosphere as a Test Tube for Meteorological Theories', Research in the Antarctic, American Association for the Advancement of Science, pp. 443-475.

  • Lettau, H. and Dabberdt, W.: 1970, ‘Variangular Wind Spirals', Boundary-Layer Meteorol. 1, 64-79.

    Google Scholar 

  • Marquardt, D.: 1963, ‘An Algorithm for Least-Squares Estimation of Nonlinear Parameters', J. Soc. Indust. Appl. Math. 11, 431-441.

    Google Scholar 

  • Mason, P. J. and Derbyshire, S. H.: 1990, ‘Large-Eddy Simulation of the Stably Stratified Atmospheric Boundary Layer', Boundary-Layer Meteorol. 53, 117-162.

    Google Scholar 

  • Mason, P. J. and Thomson, D. J.: 1987, ‘Large-Eddy Simulation of the Neutral-Static-Stability Planetary Boundary Layer', Quart. J. Roy. Meteorol. Soc. 113, 413-433.

    Google Scholar 

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Atmospheric Surface Layer’ (in Russian), Trudy Geofiz. Inst. Akad. Nauk SSSR 24(151), 163-187.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1978, ‘The Computation of the Friction Velocity u * and the Temperature Scale T * from Temperature and Wind Velocity Profiles by Least-Square Methods', Boundary-Layer Meteorol. 14, 235-246.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer', J. Atmos. Sci. 41, 2202-2216.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1985, ‘A Model for the Stationary, Stable Boundary Layer', in J. C. R. Hunt (ed.), Turbulence and Diffusion in Stable Environment, Clarendon Press, Oxford, pp. 149-179.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Tennekes, H.: 1981, ‘A Rate Equation for the Nocturnal Boundary-Layer-Height', J. Atmos. Sci. 38, 1418-1428.

    Google Scholar 

  • Pollard, R. T., Rhines, R. B., and Thompson, R. O. R. Y.: 1973, ‘The Deepening of the Wind-Mixed Layer. A Rate Equation for the Nocturnal Boundary-Layer-Height', Geophys. Fluid Dyn. 3, 381-404.

    Google Scholar 

  • Rossby, C. G. and Montgomery, R. G.: 1935, ‘The Layer of Frictional Influence in Wind and Ocean Currents', Pap. Phys. Oceanogr. Meteorol. 3(3), 1-101.

    Google Scholar 

  • Sorbjan, Z.: 1986, ‘On Similarity in the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 34, 377-397.

    Google Scholar 

  • Stigebrandt, A.: 1985, ‘A Model of the Seasonal Pycnocline in Rotating Systems with Application to the Baltic Proper', J. Phys. Oceanog. 15, 1392-1404.

    Google Scholar 

  • Wamser, C. and Lykossov, V. N.: 1995, ‘On the Friction Velocity during Blowing Snow', Contribut. Atmos. Phys. 68, 85-94.

    Google Scholar 

  • Webb, E. K.: 1970, ‘Profile Relationships: The Log-Linear Range, and Extension to Strong Stability', Quart. J. Roy. Meteorol. Soc. 96, 67-90.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer', Boundary-Layer Meteorol. 3, 141-145.

    Google Scholar 

  • Zilitinkevich, S. S.: 1989, ‘Velocity Profiles, Resistance Law and Dissipation Rate of Mean Flow Kinetic Energy in a Neutrally and Stably Stratified Planetary Boundary Layer', Boundary-Layer Meteorol. 46, 367-387.

    Google Scholar 

  • Zilitinkevich, S. S. and Mironov, D. V.: 1997, ‘A Multi-Limit Formulation for the Equilibrium Depth of a Stably Stratified Boundary Layer', Boundary-Layer Meteorol. 81, 325-351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handorf, D., Foken, T. & Kottmeier, C. The Stable Atmospheric Boundary Layer over an Antarctic ice Sheet. Boundary-Layer Meteorology 91, 165–189 (1999). https://doi.org/10.1023/A:1001889423449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001889423449

Navigation