Skip to main content
Log in

Singularities of Euler Flow? Not Out of the Blue!

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Does three-dimensional incompressible Euler flow with smooth initial conditions develop a singularity with infinite vorticity after a finite time? This blowup problem is still open. After briefly reviewing what is known and pointing out some of the difficulties, we propose to tackle this issue for the class of flows having analytic initial data for which hypothetical real singularities are preceded by singularities at complex locations. We present some results concerning the nature of complex space singularities in two dimensions and propose a new strategy for the numerical investigation of blowup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Onsager, Statistical hydrodynamics, Nuovo Cimento 6:279-287 (Suppl. Ser. IX) (1949).

    Google Scholar 

  2. U. Frisch, Fully developed turbulence and singularities, in Les Houches 1981: Chaotic Behavior of Deterministic Systems, G. Iooss, R. Hellemann, and R. Stora, eds. (North-Holland, Amsterdam, 1983).

    Google Scholar 

  3. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15:1-89 (1943).

    Google Scholar 

  4. U. Frisch, A. Pouquet, P.-L. Sulem, and M. Meneguzzi, The dynamics of two-dimensional ideal MHD, J. MÉc ThÉor. Appliqu. (Paris), 191-216 (Special issue on two-dimensional turbulence) (1983).

  5. M.-E. Brachet, M. Meneguzzi, A. Vincent, H. Politano, and P.-L. Sulem, Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows, Phys. Fluids 4:2845-2854 (1992).

    Google Scholar 

  6. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  7. P. Constantin, An Eulerian-Lagrangian approach for incompressible fluids: Local theory, J. Amer. Math. Soc. 14:263-277 (2000).

    Google Scholar 

  8. A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  9. W. Wolibner,, Un thÉorÈme sur l'existence du mouvement plan d'un fluide parfait, homogÈne, incompressible, pendant un temps infiniment long, Math. Z 37:698-726 (1933).

    Google Scholar 

  10. E. HÖlder, Über die unbeschrÄnkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegretzen inkompressiblen FlÜssigkeit, Math. Z 37:727-738 (1933).

    Google Scholar 

  11. L. Lichtenstein, Über einige ExistenzÄtze der Hydrodynamik homogener, unzusammendrÜckbarer, reibungsloser FlÜssigkeiten und die Helmholtzschen WirbelsÄtze, Math. Z 23:89-154; 309-316 (1925).

    Google Scholar 

  12. J. T. Beale, T. Kato, and A. J. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94:61-66 (1985).

    Google Scholar 

  13. C. Fefferman, Existence and smoothness of the Navier-Stokes equations, www.claymath.org/prizeproblems/navierstokes.htm (2000).

  14. S. A. Orszag, Statistical theory of turbulence, in Les Houches 1973: Fluid Dynamics, R. Balian and J. L. Peube, eds. (Gordon & Breach, New York, 1977).

    Google Scholar 

  15. M.-E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, and U. Frisch, Small-scale structure of the Taylor-Green vortex, J. Fluid. Mech. 130:411-452 (1983).

    Google Scholar 

  16. S. Tanveer and C. G. Speziale, Singularities of the Euler equation and hydrodynamic stability, Phys. Fluids A 5:1456-1465 (1993).

    Google Scholar 

  17. A. Bhattarcharjee, C. S. Ng, and Xiaogang Wang, Finite-time singularity and Kolmogorov spectrum in a symmetric three-dimensional spiral model, Phys. Rev. E 52:5110-5123 (1995).

    Google Scholar 

  18. C. Bardos, S. Benachour, and M. Zerner,, AnalyticitÉ des solutions periodiques de l'Équation d'Euler en deux dimensions, C. R. Acad. Sci. Paris A 282:995-998 (1976).

    Google Scholar 

  19. C. Goulaouic and M. S. Baouendi, Cauchy problem for analytic pseudo-differential operators, Comm. Partial Differential Equations 1:135-189 (1976).

    Google Scholar 

  20. S. Benachour,, AnalyticitÉ des solutions de l'Équation d'Euler en trois dimensions, C. R. Acad. Sci. Paris A 283:107-110 (1976).

    Google Scholar 

  21. C. Bardos and S. Benachour,, Domaine d'analyticitÉ des solutions de l'Équation d'Euler dans un ouvert de ℝ3, Ann. Scuola Norm. Sup. Pisa 4:647-687 (1977).

    Google Scholar 

  22. S. Benachour, Analyticity of solutions of Euler equations, Arch. Rat. Mech. Anal. 71:271-299 (1979).

    Google Scholar 

  23. Z. Grujic and I. Kukavica, Space analyticity for the Navier-Stokes and related equations with initial data in Lp, J. Funct. Anal. 152:447-466 (1998).

    Google Scholar 

  24. H. A. Rose and P.-L. Sulem, Fully developed turbulence and statistical mechanics, J. Phys. France 39:441-484 (1978).

    Google Scholar 

  25. C. Sulem, P.-L. Sulem, and H. Frisch, Tracing complex singularities with spectral methods, J. Comput. Phys. 50:138-161(1983).

    Google Scholar 

  26. G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a Complex Variable: Theory and Technique (McGraw-Hill, New York, 1966).

    Google Scholar 

  27. U. Frisch and R. Morf, Intermittency in nonlinear dynamics and singularities at complex times, Phys. Rev. A 23:2673-2705 (1981).

    Google Scholar 

  28. D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods (SIAM, Philadelphia, 1977).

    Google Scholar 

  29. R. Grauer and T. C. Sideris, Numerical computation of 3D incompressible ideal fluids with swirl, Phys. Rev. Lett. 67:3511-3514 (1991).R. Grauer and T. C. SiderisFinite time singularities in ideal fluids with swirl, Physica D 88:116-132 (1995).

    Google Scholar 

  30. A. Pumir and E. D. Siggia, Development of singular solutions to the axisymmetric Euler equations, Phys. Fluids A 4:1472-1491 (1992).

    Google Scholar 

  31. W. E and C.-W. Shu, Small-scale structures in Boussinesq convection, Phys. Fluids 6:49(1994).

    Google Scholar 

  32. R. E. Caflisch, N. Ercolani, and G. Steele, Geometry of Singularities for the Steady Boussinesq Equations, UCLA, CAM Report 95-22 (1995).

  33. R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, J. Fluid Mech. 167:65-93 (1986).

    Google Scholar 

  34. U. Frisch, The analytic structure of turbulent flows, in Proceed. Chaos and Statistical Methods, Sept. 1983, Kyoto, Y. Kuramoto, ed. (Springer, 1984), pp. 211-220.

  35. D. Bessis and J.-D. Fournier, Pole condensation and the Riemann surface associated with a shock in Burgers' equation, J. Phys. Lett. (Paris) 45:L833-L841 (1984).

    Google Scholar 

  36. D. Bessis and J.-D. Fournier, Complex singularities and the Riemann surface for the Burgers equation, in Nonlinear Physics, Proceedings of the International Conference, Shangai, April 24-30, 1989, Gu Chaohao, Li Yishen, and Tu Guizhan, eds. (Springer, Berlin, 1990), pp. 252-257.

    Google Scholar 

  37. E. Behr, J. Necas, and H. Wu, On blowup of solutions for Euler equations, Math. Model. and Numer. Anal. 35:229-238 (2001).

    Google Scholar 

  38. J. B. Bell and D. L. Marcus, Vorticity intensification and transition to turbulence in the three-dimensional Euler equations, Comm. Math. Phys. 147:371-394 (1992).

    Google Scholar 

  39. M.-E. Brachet, Direct simulation of three-dimensional turbulence in the Taylor-Green vortex, Fluid Dyn. Res. 8:1-8 (1991).

    Google Scholar 

  40. R. E. Caflisch and G. C. Papanicolaou, eds., Singularities in fluids, plasmas and optics, NATO Series C, Vol. 404 (Kluwer, Dordrecht, 1993).

    Google Scholar 

  41. P. Constantin, Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations, Comm. Math. Phys. 104:311-329 (1986).

    Google Scholar 

  42. P. Constantin, Geometric statistics in turbulence, SIAM Rev. 36:73-98 (1994).

    Google Scholar 

  43. P. Constantin, C. Fefferman, and A. J. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equations, Comm. Partial Differential Equations 21:559-571 (1996).

    Google Scholar 

  44. C. R. Doering and J. D. Gibbon, Applied Analysis of the Navier-Stokes Equations (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  45. J. D. Gibbon and M. Heritage, Angular dependence and growth of vorticity in the three-dimensional Euler equations, Phys. Fluids 9:901-909 (1997).

    Google Scholar 

  46. R. Grauer, C. Marliani, and K. Germaschewski, Adaptive mesh refinement for singular solutions of the incompressible Euler equations, Phys. Rev. Lett. 80:4177-4180 (1998).

    Google Scholar 

  47. T. Kato, Nonstationary flows of viscous and ideal fluids in ℝ3, J. Funct. Anal. 9:296-305 (1972).

    Google Scholar 

  48. R. M. Kerr, Evidence for a singularity of the three-dimensional incompressible Euler equations, Phys. Fluids A 5:1725-1746 (1993).

    Google Scholar 

  49. J. Gibbon, B. Galanti, and R. M. Kerr, Stretching and compression of vorticity in the 3-D Euler equations, in Turbulence Structure and Vortex Dynamics, J. C. R. Hunt and J. C. Vassilicos, eds. (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  50. S. Kida, Three-dimensional periodic flows with high-symmetry, J. Phys. Soc. Japan 54:2132-2136 (1985).

    Google Scholar 

  51. A. J. Majda, Vorticity, turbulence and acoustics in fluid flow, SIAM Rev. 33:349-388 (1991).

    Google Scholar 

  52. C. Marchioro and M. Pulvirenti, The Mathematical Theory of Incompressible Nonviscous Fluids (Springer, New York, 1991).

    Google Scholar 

  53. D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc. Roy. Soc. A 365:105-119 (1979).

    Google Scholar 

  54. K. Ohkitani and J. D. Gibbon, Numerical study of singularity formation in a class of Euler and Navier-Stokes flows, Phys. Fluids 12:3181-3194 (2000).

    Google Scholar 

  55. R. B. Pelz and O. N. Boratav, On a possible Euler singularity during transition in a high-symmetry flow, in Small-Scale Structures in Three-Dimensional Hydro and Magneto Hydrodynamic Turbulence, M. Meneguzzi, A. Pouquet, and P.-L. Sulem, eds., Lecture Notes in Physics, Vol. 462 (Springer, Berlin, 1995), pp. 25-32.

    Google Scholar 

  56. R. B. Pelz, Symmetry and the hydrodynamic blow-up problem, J. Fluid Mech. 444:299-320 (2001).

    Google Scholar 

  57. G. Ponce, Remark on a paper by J. T. Beale, T. Kato, and A. Majda, Comm. Math. Phys. 98:349-353 (1985).

    Google Scholar 

  58. G. I. Taylor and A. E. Green, Mechanism of the production of small eddies from large ones, Proc. Roy. Soc. A 158:499-521 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frisch, U., Matsumoto, T. & Bec, J. Singularities of Euler Flow? Not Out of the Blue!. Journal of Statistical Physics 113, 761–781 (2003). https://doi.org/10.1023/A:1027308602344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027308602344

Navigation