Skip to main content
Log in

Gibbsian Hypothesis in Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that Kolmogorov multipliers in turbulence cannot be statistically independent of others at adjacent scales (or even a finite range apart) by numerical simulation of a shell model and by theory. As the simplest generalization of independent distributions, we suppose that the steady-state statistics of multipliers in the shell model are given by a translation-invariant Gibbs measure with a short-range potential, when expressed in terms of suitable “spin” variables: real-valued spins that are logarithms of multipliers and XY-spins defined by local dynamical phases. Numerical evidence is presented in favor of the hypothesis for the shell model, in particular novel scaling laws and derivative relations predicted by the existence of a thermodynamic limit. The Gibbs measure appears to be in a high-temperature, unique-phase regime with “paramagnetic” spin order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. N. Kolmogorov, J. Fluid. Mech. 13:82(1962).

    Google Scholar 

  2. R. H. Kraichnan, J. Fluid Mech. 62:305(1974).

    Google Scholar 

  3. R. Benzi, L. Biferale, and G. Parisi, Physica D 65:163(1993).

    Google Scholar 

  4. V. S. L'vov, E. Podivilov, A. Pomyalov, I. Procaccia, and D. Vandembrouq, Phys. Rev. E 58:1811(1998).

    Google Scholar 

  5. H.-O. Georgii, Gibbs Measures and Phase Transitions (Walter de Gruyter, 1988).

  6. G. L. Eyink, S. Chen, and Q. Chen, in preparation.

  7. N. SchÖrghofer, L. Kadanoff, and D. Lohse, Physica D 88:40(1995).

    Google Scholar 

  8. J.-L. Gilson and T. Dombre, Phys. Rev. Lett. 79:5002(1997).

    Google Scholar 

  9. P. D. Ditlevsen and P. Giuliani, Phys. Rev. E 63:036304(2001).

    Google Scholar 

  10. F. J. Dyson, Commun. Math. Phys. 12:91(1969); J. M. Kosterlitz, Phys. Rev. Lett. 37:1577,1976.

    Google Scholar 

  11. J. L. Lebowitz and R. H. Schonmann, Probab. Theory Related Fields 77:49(1988).

    Google Scholar 

  12. F. Okkels and M. H. Jensen, Phys. Rev. E 57:6643(1998).

    Google Scholar 

  13. K. R. Sreenivasan, S. I. Vainshtein, R. Bhiladvala, I. San Gil, S. Chen, and N. Cao, Phys. Rev. Lett. 77:1488(1996).

    Google Scholar 

  14. R. Peierls, Proc. Cambridge Phil. Soc. 32:477(1936).

    Google Scholar 

  15. S. A. Pirogov and Ya. G. Sinai, Theor. and Math. Phys. 25:358-369, 1185-1192 (1975).

    Google Scholar 

  16. R. H. Schonmann, Commun. Math. Phys. 124:1-7 (1989).

    Google Scholar 

  17. R. L. Dobrushin and S. B. Shlosman, Commun. Math. Phys. 200:125(1999).

    Google Scholar 

  18. A. C. D. van Enter, R. FernÁndez, and A. D. Sokal, J. Stat. Phys. 72:879(1993).

    Google Scholar 

  19. J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov Chains, 2nd ed. (Springer-Verlag, New York, 1976).

    Google Scholar 

  20. C. Meneveau and J. Katz, Annu. Rev. Fluid Mech. 32:1(2000).

    Google Scholar 

  21. Q. Chen, S. Chen, G. L. Eyink, and K. R. Sreenivasan, Phys. Rev. 90:254501(2003).

    Google Scholar 

  22. C. Meneveau, J. Fluid. Mech. 232:469(1991).

    Google Scholar 

  23. R. Benzi, L. Biferale, R. Tripiccione, and E. Trovatore, Phys. Fluids 9:2355(1997).

    Google Scholar 

  24. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyink, G.L., Chen, S. & Chen, Q. Gibbsian Hypothesis in Turbulence. Journal of Statistical Physics 113, 719–740 (2003). https://doi.org/10.1023/A:1027304501435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027304501435

Navigation