Skip to main content
Log in

Screened Cluster Expansions for Partially Ionized Gases

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a partially ionized gas at thermal equilibrium, in the Saha regime. The system is described in terms of a quantum plasma of nuclei and electrons. In this framework, the Coulomb interaction is the source of a large variety of phenomena occurring at different scales: recombination, screening, diffraction, etc. In this paper, we derive a cluster expansion adequate for a coherent treatment of those phenomena. The expansion is obtained by combining the path integral representation of the quantum gas with familiar Mayer diagrammatics. In this formalism, graphs have a clear physical interpretation: vertices are associated with recombined chemical species, while bonds describe their mutual interactions. The diagrammatical rules account exactly for all effects in the medium. Applications to thermodynamics, van der Waals forces and dielectric versus conductive behaviour will be presented in forthcoming papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Morita, Equation of state of high temperature plasma, Prog. Theor. Phys. 22:757(1959).

    Google Scholar 

  2. W. Ebeling, Statistische Thermodynamik der gebundenen Zustande in Plasmen, Ann. Phys. (Leipzig) 19:104(1967).

    Google Scholar 

  3. W. D. Kraeft, D. Kremp, W. Ebeling, and G. Ropke, Quantum Statistics of Charged Particles (Plenum Press, New York, 1986).

    Google Scholar 

  4. T. Kahlbaum, The quantum-diffraction term in the free energy for Coulomb plasma and the effective-potential approach, J. Phys. IV 10(P5):455(2000)

    Google Scholar 

  5. W. Ebeling, W. D. Kraeft, and D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976).

    Google Scholar 

  6. F. J. Rogers, Statistical mechanics of Coulomb gases of arbitrary charge, Phys. Rev. A 10:2441(1974).

    Google Scholar 

  7. F. J. Rogers, in The Equation of State in Astrophysics (Cambridge University Press, Cambridge, England, 1994).

    Google Scholar 

  8. A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  9. Ph. A. Martin and P. Rothen, Many-Body Problems and Quantum Field Theory (Springer, Berlin, 2002).

    Google Scholar 

  10. E. W. Montroll and J. C. Ward, Quantum statistics of interacting particles: General theory and some remarks on properties of an electron gas, Phys. Fluid. 1:55(1958)

    Google Scholar 

  11. H. E. DeWitt, Evaluation of the quantum-mechanical ring sum with Boltzmann statistics, J. Math. Phys. 3:1216(1962)

    Google Scholar 

  12. H. E. DeWitt Statistical mechanics of high-temperature quantum plasmas beyond the ring approximation, J. Math. Phys. 7:616(1967).

    Google Scholar 

  13. H. E. DeWitt, M. Schlanges, A. Y. Sakakura, and W. D. Kraeft, Low density expansion of the equation of state for a quantum electron-gas, Phys. Lett. A 197:326(1995).

    Google Scholar 

  14. B. Simon, Functional Integration and Quantum Physics (Academic, New York, 1979)

    Google Scholar 

  15. L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981)

    Google Scholar 

  16. G. Roepstorff, Path Integral Approach to Quantum Physics (Springer, Berlin, 1994).

    Google Scholar 

  17. J. Ginibre, Some applications of funtional integration in statistical mechanics, in Statistical Mechanics and Quantum Field Theory, C. DeWitt and R. Stora, eds., Les Houches (Gordon & Breach, 1971).

  18. F. Cornu, Correlations in quantum plasmas: I. Resummations in Mayer-like diagrammatics, Phys. Rev. E 53:4562(1996).

    Google Scholar 

  19. A. Alastuey, F. Cornu, and A. Perez, Virial expansions for quantum plasmas: Diagrammatic resummations, Phys. Rev. E 49:1077(1994).

    Google Scholar 

  20. J. E. Mayer, The theory of ionic solutions, J. Chem. Phys. 18:1426(1950)

    Google Scholar 

  21. E. E. Salpeter, On Mayer's theory of cluster expansions, Ann. Phys. (New York) 5:183(1958).

    Google Scholar 

  22. E. Meeron, Theory of potentials of average force and radial distribution functions in ionic solutions, J. Chem. Phys. 28:630–643 (1958)

    Google Scholar 

  23. E. Meeron Plasma Physics (McGraw-Hill, New York, 1961).

    Google Scholar 

  24. R. Abe, Giant cluster expansion theory and its application to high temperature plasma Prog. Theor. Phys. 22:213(1959).

    Google Scholar 

  25. V. Ballenegger, Ph. A. Martin, and A. Alastuey, Quantum Mayer graphs for Coulomb systems and the analog of the Debye potential, J. Stat. Phys. 108:169–211 (2002).

    Google Scholar 

  26. A. Alastuey and A. Perez, Virial expansion of the equation of state of a quantum plasma, Europhys. Lett. 20:19(1992)

    Google Scholar 

  27. A. Alastuey, F. Cornu, and A. Perez, Virial expansion for quantum plasmas: Maxwell-Boltzmann statistics, Phys. Rev. E 51:1725(1995)

    Google Scholar 

  28. A. Alastuey and A. Perez, Virial expansion for quantum plasmas: Fermi-Bose statistics, Phys. Rev. E 53:5714(1996)

    Google Scholar 

  29. F. Cornu, Quantum plasmas with or without magnetic field. II. Exact low-density free energy, Phys. Rev. E 58:5293(1998).

    Google Scholar 

  30. D. C. Brydges and Ph. A. Martin, Coulomb systems at low density: A review, J. Stat. Phys. 96:1163–1330 (1999).

    Google Scholar 

  31. A. Alastuey, V. Ballenegger, F. Cornu, and Ph. A. Martin, Equation of state for the Hydrogen Plasma: Estimations of non-ideal contributions in the Saha regime, in preparation.

  32. V. Ballenegger and Ph. A. Martin, Quantum Coulomb systems: Some exact results in the atomic limit, Physica A 306:59–67 (2002)

    Google Scholar 

  33. V. Ballenegger and Ph. A. MartinDielectric versus conductive behaviour in quantum gases: Exact results for the hydrogen plasma, submitted to Physica A.

  34. A. Alastuey, F. Cornu, and Ph. A. Martin, Algebraic screening and van der Waals forces in partially ionized gases, in Strongly Coupled Coulomb Systems, G. Kalman, K. Blagoev, and J. J. M. Rommel, eds. (Plenum, New York, 1998)

    Google Scholar 

  35. A. Alastuey, F. Cornu, and Ph. A. Martin, Van der Waals forces at finite temperature and finite density, in preparation.

  36. E. H. Lieb and J. Lebowitz, The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei, Adv. Math. 9:316–398 (1972).

    Google Scholar 

  37. F. Dyson and A. Lenard, Stability of matter I, J. Math. Phys. 8:423–434 (1967)

    Google Scholar 

  38. F. Dyson and A. Lenard Stability of matter II, J. Math. Phys. 9:698–711 (1968).

    Google Scholar 

  39. P. Grüter and F. Laloë, Ursell operators in statistical physics, J. Phys. I (France) 5:181,5:1255 (1995); 7:485 (1997)

    Google Scholar 

  40. P. Grüter and F. Laloë, Ursell operators in statistical physics, J. Phys. I (France) 5:1255(1995)

    Google Scholar 

  41. P. Grüter and F. Laloë, Ursell operators in statistical physics, J. Phys. I (France) 7:485(1997).

    Google Scholar 

  42. T. D. Lee and C. N. Yang, Many-body problem in quantum statistical mechanics. I. General formulation, Phys. Rev. 113:1165(1959).

    Google Scholar 

  43. J. N. Fuchs, M. Holzmann, and F. Laloë, Ursell operators in statistical physics of dense systems: The role of high order operators and of exchange cycles, Eur. Phys. J. B 25:463(2002).

    Google Scholar 

  44. A. Alastuey and Ph. A. Martin, Absence of exponential clustering for static quantum correlations and time-displaced correlations in charged fluids, Eur. Phys. Lett. 6:385–390 (1988)

    Google Scholar 

  45. A. Alastuey and Ph. A. Martin Absence of exponential clustering in quantum Coulomb fluids, Phys. Rev. A 40:6485–6520 (1989).

    Google Scholar 

  46. F. Cornu and Ph. A. Martin, Electron gas beyond the random phase approximation: Algebraic screening, Phys. Rev. A 44:4893(1991).

    Google Scholar 

  47. F. Cornu, Correlations in quantum plasmas: II. Algebraic tails, Phys. Rev. E 53:4595(1996)

    Google Scholar 

  48. F. Cornu Exact algebraic tails of static correlations in quantum plasmas at low density, Phys. Rev. Lett. 78:1464(1997)

    Google Scholar 

  49. F. Cornu Quantum plasma with or without uniform magnetic field. III. Exact low-density algebraic tails of correlations, Phys. Rev. E 58:5322(1998).

    Google Scholar 

  50. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).

    Google Scholar 

  51. F. Cornu, Quantum plasma with or without uniform magnetic field. I. General formalism and algebraic tails of correlations, Phys. Rev. E 58:5268–5292 (1998).

    Google Scholar 

  52. A. Alastuey and W. Appel, A model of relativistic one-component plasma with Darwin interactions, Physica A 238:369(1997).

    Google Scholar 

  53. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integral (McGraw-Hill, 1965).

  54. J. G. Conlon, E. H. Lieb, and H. T. Yau, The Coulomb gas at low temperature and low density, Commun. Math. Phys. 125:153–180 (1989).

    Google Scholar 

  55. N. Macris and Ph. A. Martin, Ionization equilibrium in the proton-electron gas, J. Stat. Phys. 60:619–637 (1990).

    Google Scholar 

  56. C. Fefferman, The atomic and molecular nature of matter, Rev. Math. Iberoamericana 1:1–44 (1985).

    Google Scholar 

  57. V. Ballenegger, étude des phénomènes d'écran et de polarisation dans un plasma quantique par la méthode des graphes de Mayer, Ph.D. thesis (école Polytechnique Fédérale de Lausanne, 2002).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alastuey, A., Ballenegger, V., Cornu, F. et al. Screened Cluster Expansions for Partially Ionized Gases. Journal of Statistical Physics 113, 455–503 (2003). https://doi.org/10.1023/A:1026064617421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026064617421

Navigation