Skip to main content

Electron–Atom Collisions

  • Chapter
  • First Online:
Plasma Atomic Physics

Abstract

The theory of electron–atom collisions including excitation, ionization, and recombination is presented in the framework of Fermi’s equivalent photon method, the similarity function approach, and semi-empirical analytical formulas. Collisional excitation is described via a quasi-classical consideration. Dipole-allowed, dipole-forbidden, and intercombination electron transitions are considered including intermediate coupling effects. Comparisons between different theoretical approaches and experimental data for excitation cross-sections are provided for various atoms and type of electronic transitions. Semi-empirical analytical formulas for excitation, de-exciation, ionization, and three-body recombination are given. Complex dielectronic recombination rates in dense plasmas are presented with account for density and electric field effects. Extensive numerical data for dielectronic recombination into H-, He-, and Li-like ions taking into account multi-channel Auger and radiative decay are given for all elements with nuclear charge Zn = 2–42 together with easy to use scaled semi-empirical formulas. The theory of excited states coupling and collisional redistribution for dielectronic recombination is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • V.A. Astapenko, Impact ionization of atoms: calculation in the Born-Compton approximation. Laser Phys. 11, 1336 (2001)

    Google Scholar 

  • V.A. Astapenko, Polarization Bremsstrahlung on Atoms, Plasmas, Nanostructures and Solids (Springer, Berlin, 2013)

    Book  Google Scholar 

  • V.A. Astapenko, A. Eletskii, V. Kudrya, P. Ventzek, Calculation of the cross-sections for electron impact excitation of magnesium. Laser Phys. 10, 1220 (2000)

    Google Scholar 

  • V.A. Astapenko, V.S. Lisitsa, Collisional Processes in low Temperature Plasma (MIPT-Textbook, Moscow, 2007). (in Russian)

    Google Scholar 

  • J.G. Baker, D.H. Menzel, Physical processes in gazeous nebulae. Astrophys. J. 88, 52 (1938)

    Article  ADS  MATH  Google Scholar 

  • V.A. Bazylev, M.I. Chibisov, Excitation and ionization of multicharged ions by electron collisions. Phys.-Usp. 24, 276 (1981)

    ADS  Google Scholar 

  • I.L. Beigman, L.A. Vainshtein, B.N. Chichkov, Dielectron recombination. JETP 53, 490 (1981)

    Google Scholar 

  • I.L. Beigman, L.A. Vainshtein, M. Brix, A. Pospieszczyk, I. Bray, D.B. Fursa, YuV Ralchenko, Excitation and ionization cross-sections for HeI from normalized Born and K-matrix calculations: ΔS = 0 transitions from n = 2,3 excited states. ADNDT 74, 123 (2000)

    Article  ADS  Google Scholar 

  • V.B. Berestetskii, L.P. Pitaevskii, E.M. Lifshitz, Quantum Electrodynamics (Elsevier, Oxford, 1982)

    Google Scholar 

  • H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum Publishing, New York, 1977)

    Book  MATH  Google Scholar 

  • D. Braunstein, S. Shuker, X-ray laser without inversion in a three-level ladder system. Phys. Rev. A 68, 013812 (2003)

    Article  ADS  Google Scholar 

  • L.A. Bureyeva, T. Kato, V.S. Lisitsa, C. Namba, Quasiclassical representation of autoionization decay reates in parabolic coordinates. J. Phys. B: At. Mol. Opt. Phys. 34, 3909 (2001)

    Article  ADS  Google Scholar 

  • L.A. Bureyeva, T. Kato, V.S. Lisitsa, C. Namba, Quasiclassical theory of dielecronic recombination in plasmas. Phys. Rev. A 65, 032702 (2002)

    Article  ADS  Google Scholar 

  • A. Burgess, Dielectronic recombination and the temperature of the solar corona. Astrophys. J. 139, 776 (1964)

    Article  ADS  Google Scholar 

  • H.K. Chung, C. Bowen, C.J. Fontes, S.B. Hansen, Yu. Ralchenko, Comparison and analysis of collisional-radiative models at the NLTE-7 workshop. HEDP 9, 645 (2013)

    Google Scholar 

  • J. Colgan, C.J. Fontes, H. Zhang, J. Abdallah Jr., Collisional-radiative modeling of Tungsten at temperatures of 1200–2400 eV. Atoms 3, 76 (2015). https://doi.org/10.3390/atoms3020076

    Article  ADS  Google Scholar 

  • R.D. Cowan, Resonant-scattering (autoionisation) contributions to excitation rates in O4+ and similar ions. J. Phys. B: At. Mol. Opt. Phys. 13, 1471 (1980)

    Article  ADS  Google Scholar 

  • R.D. Cowan, The Theory of Atomic Structure and Spectra (California University Press, 1981)

    Google Scholar 

  • R.D. Cowan, Effects of autoionising levels in highly ionized atoms. Phys. Scr. T3, 200 (1983)

    Article  ADS  Google Scholar 

  • J. Davis, V.L. Jabobs, Effects of plasma microfields on radiative transitions from atomic levels above the ionization threshold. Phys. Rev. A 12, 2017 (1975)

    Article  ADS  Google Scholar 

  • B. Deschaud, O. Peyrusse, F.B. Rosmej, Generalized atomic physics processes when intense femtosecond XUV- and X-ray radiation is interacting with solids. Europhys. Lett. 108, 53001 (2014)

    Article  ADS  Google Scholar 

  • B. Deschaud, O. Peyrusse, F.B. Rosmej, Atomic kinetics for isochoric heating of solid aluminum under short intense XUV free electron laser irradiation. HEDP 15, 22 (2015)

    ADS  Google Scholar 

  • R.C. Elton, X-Ray Lasers (Academic Press, New York, 1990)

    Google Scholar 

  • E. Fermi, Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen. Zeitschrift für Physik 29, 315 (1924)

    Article  ADS  MATH  Google Scholar 

  • V. Fischer, V. Bernshtam, H. Golten, Y. Maron, Electron-impact excitation cross-sections for allowed transitions in atoms. Phys. Rev. A 53, 2425 (1996)

    Article  ADS  Google Scholar 

  • M.N. Gailitis, The use of the Bethe approximation in calculating the excitation cross-section of an ion by electrons (in Russian), in Atomic Collisions (Latvian State University, Riga, 1963), p. 93

    Google Scholar 

  • J.N. Gau, R.J.W. Henry, Excitation of lithumlike ions by electron impact. Phys. Rev. A 16, 986 (1977)

    Article  ADS  Google Scholar 

  • M. Gryzinski, Classical theory of electronic and ionic inelastic collisions. Phys. Rev. 115, 374 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Gryzinski, Two particle collisions. I. General relations for collisions in the laboratory system. Phys. Rev. 138, A305 (1965a)

    Google Scholar 

  • M. Gryzinski, Two particle collisions. II. Coulomb collisions in the laboratory system of coordinates. Phys. Rev. 138, A322 (1965b)

    Google Scholar 

  • M. Gryzinski, Classical theory of atomic collisions. I. Theory of inelastic collisions. Phys. Rev. 138, A336 (1965c)

    Google Scholar 

  • Y. Hahn, Plasma density effects on the three-body recombination rate coefficients. Phys. Lett. A 231, 82 (1997)

    Article  ADS  Google Scholar 

  • Y. Hahn, J. Li, Transient behavior of nonequilibrium plasma formed by merged beams. Zeitschrift für Physik D36, 85 (1996)

    Google Scholar 

  • W. Heitler, The Quantum Theory of Radiation (Dover, New York, 1984)

    MATH  Google Scholar 

  • J. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998), ISBN: 978-0-471-30932-1

    Google Scholar 

  • V.J. Jacobs, J. Davis, Properties of Rydberg autoionizing states in electric field. Phys. Rev. A 19, 776 (1979)

    Article  ADS  Google Scholar 

  • V.J. Jacobs, J. Davis, P.C. Kepple, Enhancement of dielectronic recombination by plasma electric microfields. Phys. Rev. Lett. 37, 1390 (1976)

    Article  ADS  Google Scholar 

  • T. Kato, E. Asano, Comparison of recombination rate coefficients given by empirical formulas for ions from hydrogen through nickel. NIFS-DATA-54 (June 1999)

    Google Scholar 

  • T. Kato, K. Masai, M. Arnaud, Comparison of ionization rate coefficients of ions from hydrogen through nickel. NIFS-DATA-14 (Sept. 1991)

    Google Scholar 

  • D.P. Kilcrease, S. Brookes, Correction of near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation. HEDP 9, 722 (2013)

    ADS  Google Scholar 

  • Y.-K. Kim, M.E. Rudd, Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A 50, 3954 (1994)

    Article  ADS  Google Scholar 

  • V.I. Kogan, A.B. Kukushkin, V.S. Lisitsa, Kramers electrodynamics and electron-atomic radiative-collisional processes. Phys. Rep. 213, 1 (1992)

    Article  ADS  Google Scholar 

  • L.D. Landau, E.M. Lifschitz, The Classical Theory of Fields (Pergamon, Oxford, 2003)

    Google Scholar 

  • L.D. Landau, E.M. Lifschitz, Mechanics (Elsevier, Oxford, 2005)

    Google Scholar 

  • W. Lotz, Electron impact-ionization cross-sections for atoms up to Z = 108. Zeitschrift für Physik 232, 101 (1970)

    Google Scholar 

  • R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford Science Publications, 2000)

    Google Scholar 

  • P. Mansbach, J. Keck, Monte Carlo Trajectory calculations of atomic excitation and ionization by thermal electrons. Phys. Rev. 181, 275 (1969)

    Article  ADS  Google Scholar 

  • S.A. Mayorov, A.N. Tkachev, S.I. Yakovlenko, Metastable supercooled plasma. Physics Uspekhi 37, 279 (1994)

    Article  ADS  Google Scholar 

  • NIST (2019). http://www.nist.gov

  • I.C. Percival, M.J. Seaton, The polarization of atomic line radiation excited by electron impact. Philos. Trans. Royal Soc. London Ser. A Math. Phys. Sci. 251, 113 (1958)

    ADS  Google Scholar 

  • F. Petitdemange, F.B. Rosmej, Dielectronic satellites and Auger electron heating: irradiation of solids by intense XUV-free electron laser radiation, in New Trends in Atomic & Molecular Physics—Advanced Technological Applications, vol. 76, ed. by Mohan (Springer, 2013), pp. 91–114, ISBN 978-3-642-38166-9

    Google Scholar 

  • H. Van Regemorter, Rate of collisional excitation in stellar atmospheres. Astrophys. J. 136, 906 (1962)

    Article  ADS  Google Scholar 

  • F. Robicheaux, M.S. Pindzola, Enhanced dielectronic recombination in crossed electric and magnetic fields. Phys. Rev. Lett. 79, 2237 (1997)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, Diagnostic properties of Be-like and Li-like satellites in dense transient plasmas under the action of highly energetic electrons. JQSRT 51, 319 (1994)

    Article  ADS  Google Scholar 

  • F.B. Rosmej, The Heβ-emission in dense non-Maxwellian plasmas. J. Phys. B Lett: At. Mol. Opt. Phys. 33, L1 (2000)

    Google Scholar 

  • F.B. Rosmej, X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas, in Highly Charged Ion Spectroscopic Research, ed. by Y. Zou, R. Hutton (Taylor and Francis 2012), pp. 267–341, ISBN: 978-1-4200-7904-3

    Google Scholar 

  • F.B. Rosmej, A.Ya. Faenov, T.A. Pikuz, F. Flora, P. Di Lazzaro, S. Bollanti, N. Lizi, T. Letardi, A. Reale, L. Palladino, O. Batani, S. Bossi, A. Bornardinello, A. Scafati, L. Reale, Line formation of high intensity Heβ-Rydberg dielectronic satellites 1s3lnl’ in laser produced plasmas. J. Phys. B Lett.: At. Mol. Opt. Phys. 31, L921 (1998)

    Google Scholar 

  • F.B. Rosmej, R. Stamm, V.S. Lisitsa, Convergent coupling of Helium to the H/D background in magnetically confined plasmas. Europhys. Lett. 73, 342 (2006)

    Google Scholar 

  • F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, L.A. Vainshtein, Dielectronic recombination in non-LTE plasmas, Matter and Radiation at Extremes (Review) 5, 064601 (2020). https://doi.org/10.1063/5.0014158

  • J.G. Rubiano, R. Florido, C. Bowen, R.W. Lee, Yu. Ralchenko, Review of the 4th NLTE Code Comparison Workshop. HEDP 3, 225 (2007)

    Google Scholar 

  • V.P. Shevelko, L.A. Vainshtein, Atomic Physics for Hot Plasmas (IOP Publishing, Bristol, 1993)

    Google Scholar 

  • I.I. Sobelman, A.V. Vinogradov, On the problem of extreme UV and X-ray lasers, in Advances in Atomic and Molecular Physics, vol. 20, 327, ed. by S.D. Bates, B. Bederson (Academic Press, New York, 1985)

    Google Scholar 

  • I.I. Sobelman, L.A. Vainshtein, Excitation of Atomic Spectra (Alpha Science, 2006)

    Google Scholar 

  • V.N. Thytovich, I.M. Oiringel, Polarization Bremsstrahlung of Particles and Atoms (Plenum, New York, 1991)

    Google Scholar 

  • L.A. Vainshtein, V.P. Shevelko, Program ATOM, Preprint No. 43, (Lebedev Physical Institute, Moscow, 1996)

    Google Scholar 

  • G.S. Voronov, A practical fit formula for ionization rate coefficients of atoms and ions by electron impact: Z = 1–28. ADNDT 65, 1 (1997)

    Article  ADS  Google Scholar 

  • J.G. Wang, T. Kato, I. Murakami, in Dielectronic Recombination Rate Coefficients to Excited States of He from He+. NIFS-DATA-53 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank B. Rosmej .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosmej, F.B., Astapenko, V.A., Lisitsa, V.S. (2021). Electron–Atom Collisions. In: Plasma Atomic Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-05968-2_5

Download citation

Publish with us

Policies and ethics