Skip to main content
Log in

Exact Solution of the Infinite-Range-Hopping Bose–Hubbard Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The thermodynamic behavior of the Bose–Hubbard model is solved for any temperature and any chemical potential. It is found that there is a range of critical coupling strengths λ c1 < λ c2 < λ c3 < ⋅⋅⋅ in this model. For coupling strengths between λ c,k and λ c,k+1, Bose–Einstein condensation is suppressed at densities near the integer values ρ = 1,...,k with an energy gap. This is known as a Mott insulator phase and was previously shown only for zero temperature. In the context of ultra-cold atoms, this phenomenon was experimentally observed in 2002(1) but, in the Bose–Hubbard model, it manifests itself also in the pressure-volume diagram at high pressures. It is suggested that this phenomenon persists for finite-range hopping and might also be experimentally observable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415:39(2002).

    Google Scholar 

  2. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic atoms in optical lattices, Phys. Rev. Lett. 81:3108(1998).

    Google Scholar 

  3. M. P. A. Fisher, P. B. Weichmann, G. Grinstein, and D. S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B 40:546(1989).

    Google Scholar 

  4. S. Sachdev, Quantum Phase Transition (Cambridge University Press, 1999).

  5. K. Sheshadri, H. R. Krishnamurthy, R. Pandit, and T. V. Ramakrishnan, Superfluid and insulating phases in an interacting boson model: Mean-field theory and the RPA, Europhys. Lett. 22:257(1993).

    Google Scholar 

  6. J. K. Freericks and H. Monien, Phase diagram of the Bose Hubbard model, Europhys. Lett. 26:545(1994).

    Google Scholar 

  7. N. Elstner and H. Monien, Dynamics and thermodynamics of the Bose-Hubbard model, Phys. Rev. B 59:12184(1999).

    Google Scholar 

  8. D. van Oosten, P. van der Straten, and H. T. C. Stoof, Quantum phases in an optical lattice, Phys. Rev. A 63 053601:1-11 (2001).

    Google Scholar 

  9. B. Toth, Phase transition in an interacting Bose system. An application of the theory of Ventsel' and Freidlin, J. Stat. Phys. 61:749(1990).

    Google Scholar 

  10. M. W. Kirson, Bose-Einstein condensation in an exactly solvable model of strongly interacting bosons, J. Phys. A: Math. Gen. A 33:731(2000).

    Google Scholar 

  11. M. Ma, B. I. Halperin, and P. A. Lee, Strongly disordered superfluids: Quantum fluctuations and critical behavior, Phys. Rev. B 34:3136(1986).

    Google Scholar 

  12. W. Krauth, N. Trivedi, and D. Ceperley, Superfluid-insulator transition in disordered Boson systems, Phys. Rev. Lett. 67:2307(1991).

    Google Scholar 

  13. D. Ueltschi, Geometric and probabilistic aspects of Boson lattice models, preprint.

  14. N. N. Bogoliubov, Jr., On model dynamical systems in statistical mechanics, Physica 32:933(1966).

    Google Scholar 

  15. N. N. Bogoliubov, Jr., New method for defining quasiaverages, Theoret. and Math. Phys. 5:1038(1971).

    Google Scholar 

  16. N. N. Bogoliubov, Jr., A Method for Studying Model Hamiltonians. A Minimax Principle for Problems in Statistical Physics (Pergamon Press, Oxford, New York etc.,1972).

    Google Scholar 

  17. N. N. Bogoliubov, Jr., J. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, and N. S. Tonchev, The Approximating Hamiltonian Method in Statistical Physics (Publ. Bulgarian Akad. Sciences, Sofia, 1981).

    Google Scholar 

  18. N. N. Bogoliubov, Jr., J. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, and N. S. Tonchev, Some classes of exactly soluble models of problems in Quantum Statistical Mechanics: The method of the approximating Hamiltonian, Russian Math. Surveys 39:1(1984).

    Google Scholar 

  19. J. Ginibre, On the asymptotic exactness of the Bogoliubov approximation for many Bosons systems, Comm. Math. Phys. 8:26(1968).

    Google Scholar 

  20. J.-B. Bru and V. A. Zagrebnov, Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas, J. Phys. A: Math. Gen. A 31:9377(1998).

    Google Scholar 

  21. V. A. Zagrebnov and J.-B. Bru, The Bogoliubov model of weakly imperfect Bose gas, Phys. Rep. 350:291(2001).

    Google Scholar 

  22. M. van den Berg, J. T. Lewis, and J. V. Pulè, The large deviation principle and some models of an interacting boson gas, Comm. Math. Phys. 118:61(1988).

    Google Scholar 

  23. T. C. Dorlas, J. T. Lewis, and J. V. Pulé, Condensation in some perturbed mean-field models of a Bose gas, Helv. Phys. Acta 64:1200(1991).

    Google Scholar 

  24. T. Kennedy, E. H. Lieb, and S. Shastry, The XY model has long-range order for all spins and all dimensions greater than one, Phys. Rev. Lett. 61:2582(1988).

    Google Scholar 

  25. O. Brattelli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. II, 2nd ed. (Springer-Verlag, New York, 1996).

    Google Scholar 

  26. D. Bessis, P. Moussa, and M. Villani, Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics, J. Math. Phys. 16:2318(1975).

    Google Scholar 

  27. M. Fannes and R. Werner, On some inequalities for the trace of exponentials, Preprint.

  28. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I: Functional Analysis (Academic Press, New York/London, 1972).

    Google Scholar 

  29. D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969).

    Google Scholar 

  30. B. Harris, Bounds for certain thermodynamic averages, J. Math. Phys. 8:1044(1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bru, JB., Dorlas, T.C. Exact Solution of the Infinite-Range-Hopping Bose–Hubbard Model. Journal of Statistical Physics 113, 177–196 (2003). https://doi.org/10.1023/A:1025774821712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025774821712

Navigation