Skip to main content
Log in

Bose–Einstein Condensation in a One-Dimensional System of Interacting Bosons

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using the Vakarchuk formulae for the density matrix, we calculate the number \(N_{k}\) of atoms with momentum \(\hbar k\) for the ground state of a uniform one-dimensional periodic system of interacting bosons. We obtain for impenetrable point bosons \( N_{0} \approx 2\sqrt{N}\) and \(N_{k=2\pi j/L} \simeq 0.31~N_{0}/\sqrt{|j|}\). That is, there is no condensate or quasicondensate on low levels at large N. For almost point bosons with weak coupling (\(\beta =\frac{\nu _{0}m}{\pi ^{2}\hbar ^{2}n} \ll 1\)), we obtain \(\frac{N_{0}}{N} \approx \left( \frac{2}{N\sqrt{\beta }}\right) ^{\sqrt{\beta }/2} \) and \( N_{k=2\pi j/L} \approx \frac{N_{0}\sqrt{\beta }}{4|j|^{1-\sqrt{\beta }/2}}\). In this case, the quasicondensate exists on the level with \(k=0\) and on low levels with \(k\ne 0\), if N is large and \( \beta \) is small (e.g., for \(N \sim 10^{10} \), \( \beta \sim 0.01\)). A method of measurement of such fragmented quasicondensate is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1, 3 (1925)

    Google Scholar 

  2. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956)

    Article  ADS  MATH  Google Scholar 

  3. D.S. Petrov, D.M. Gangardt, G.V. Shlyapnikov, J. Phys. IV Fr. 116, 5 (2004)

    Article  Google Scholar 

  4. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, Chap. 15 (Cambridge University Press, New York, 2008)

  5. L.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  6. P.C. Hohenberg, Phys. Rev. 158, 383 (1967)

    Article  ADS  Google Scholar 

  7. J.W. Kane, L.P. Kadanoff, Phys. Rev. 155, 80 (1967)

    Article  ADS  Google Scholar 

  8. L. Reatto, G.V. Chester, Phys. Rev. 155, 88 (1967)

    Article  ADS  Google Scholar 

  9. A. Lenard, J. Math. Phys. 5, 930 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  10. V.N. Popov, Theor. Math. Phys. 11, 565 (1972)

    Article  Google Scholar 

  11. V.N. Popov, JETP Lett. 31, 526 (1980)

    ADS  Google Scholar 

  12. M. Schwartz, Phys. Rev. B 15, 1399 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  13. H.G. Vaidya, C.A. Tracy, Phys. Rev. Lett. 42, 3 (1979)

    Article  ADS  Google Scholar 

  14. F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981)

    Article  ADS  Google Scholar 

  15. A. Berkovich, G. Murthy, Phys. Lett. A 142, 121 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.S. Petrov, Ph. D. Thesis, FOM Institute for Atomic and Molecular Physics, Amsterdam, 2003

  17. P.J. Forrester, N.E. Frankel, T.M. Garoni, N.S. Witte, Phys. Rev. A 67, 043607 (2003)

    Article  ADS  Google Scholar 

  18. C. Mora, Y. Castin, Phys. Rev. A 67, 053615 (2003)

    Article  ADS  Google Scholar 

  19. I.A. Vakarchuk, Theor. Math. Phys. 80, 983 (1989)

    Article  Google Scholar 

  20. I.A. Vakarchuk, Theor. Math. Phys. 82, 308 (1990)

    Article  Google Scholar 

  21. M. Girardeau, J. Math. Phys. (N.Y.) 1, 516 (1960)

  22. M. Schwartz, Phys. Rev. A 10, 1858 (1974)

    Article  ADS  Google Scholar 

  23. I.A. Vakarchuk, I.R. Yukhnovskii, Theor. Math. Phys. 42, 73 (1980)

    Article  Google Scholar 

  24. E.H. Lieb, W. Liniger, Phys. Rev. 130, 1605 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. Tomchenko, J. Phys. A 48, 365003 (2015)

    Article  MathSciNet  Google Scholar 

  26. M. Tomchenko, Low Temp. Phys. 32, 38 (2006)

    Article  ADS  Google Scholar 

  27. N.N. Bogoliubov, D.N. Zubarev, Sov. Phys. JETP 1, 83 (1956)

    Google Scholar 

  28. E. Witkowska, P. Deuar, M. Gajda, K. Rzazewski, Phys. Rev. Lett. 106, 135301 (2011)

    Article  ADS  Google Scholar 

  29. W.J. Mullin, A.R. Sakhel, J. Low Temp. Phys. 166, 125 (2012)

    Article  ADS  Google Scholar 

  30. A.G. Leggett, Quantum Liquids, Chap. 2 (Oxford University Press, New York, 2006)

  31. J. Gavoret, P. Nozières, Ann. Phys. (N.Y.) 28, 349 (1964)

  32. V. Dunjko, M. Olshanii, arXiv:0910.0565 [cond-mat]

  33. A.H. van Amerongen, J.J.P. van Es, P. Wicke, K.V. Kheruntsyan, N.J. van Druten, Phys. Rev. Lett. 100, 090402 (2008)

    Article  Google Scholar 

  34. M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)

    Article  ADS  Google Scholar 

  35. S. Richard, F. Gerbier, J.H. Thywissen, M. Hugbart, P. Bouyer, A. Aspect, Phys. Rev. Lett. 91, 010405 (2003)

    Article  ADS  Google Scholar 

  36. M.J. Davis, P.B. Blakie, A.H. van Amerongen, N.J. van Druten, K.V. Kheruntsyan, Phys. Rev. A 85, 031604R (2012)

    Article  ADS  Google Scholar 

  37. H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. L.P. Pitaevskii, Phys. Uspekhi 49, 333 (2006)

    Article  ADS  Google Scholar 

  40. T. Jacqmin, B. Fang, T. Berrada, T. Roscilde, I. Bouchoule, Phys. Rev. A 86, 043626 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Tomchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomchenko, M. Bose–Einstein Condensation in a One-Dimensional System of Interacting Bosons. J Low Temp Phys 182, 170–184 (2016). https://doi.org/10.1007/s10909-015-1435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1435-2

Keywords

Navigation