Skip to main content
Log in

Elimination of Fast Chaotic Degrees of Freedom: On the Accuracy of the Born Approximation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We apply standard projection operator techniques known from nonequilibrium statistical mechanics to eliminate fast chaotic degrees of freedom in a low-dimensional dynamical system. Through the usual perturbative approach we end up in second order with a stochastic system where the fast chaotic degrees of freedom are modelled by Gaussian white noise. The accuracy of the perturbation expansion is analysed in detail by the discussion of an exactly solvable model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. G. van Kampen, Elimination of fast variables, Phys. Rep. 124:69(1985).

    Google Scholar 

  2. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65:851(1993).

    Google Scholar 

  3. H. Haken, Synergetics (Springer, Berlin, 1977).

    Google Scholar 

  4. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1986).

    Google Scholar 

  5. C. Jones, Geometric singular perturbation theory, in Dynamical Systems, R. Johnson, ed. (Springer, Berlin, 1995).

    Google Scholar 

  6. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems (Springer, New York, 1985).

    Google Scholar 

  7. K. Hasselmann, Stochastic climate models: Part I. Theory, Tellus 28:473(1976).

    Google Scholar 

  8. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, 1998).

    Google Scholar 

  9. R. Z. Khasminskij, A limit theorem for the solutions of differential equations with random right-hand sides, Theory Probab. Appl. 11:390(1966).

    Google Scholar 

  10. M. Suzuki, Statistical mechanics of non-equilibrium systems. II, Progr. Theoret. Phys. 55:383(1976).

    Google Scholar 

  11. C. Beck, From the Perron-Frobenius equation to the Fokker-Planck equation, J. Stat. Phys. 79:875(1995).

    Google Scholar 

  12. W. Just, H. Kantz, C. Rödenbeck, and M. Helm, Stochastic modelling: Replacing fast degrees of freedom by noise, J. Phys. A 34:3199(2001).

    Google Scholar 

  13. R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33:1338(1960).

    Google Scholar 

  14. H. Mori, H. Fujisaka, and H. Shigematsu, A new expansion of the master equation, Progr. Theoret. Phys. 51:109(1974).

    Google Scholar 

  15. K. Gelfert, Asymptotic behaviour of multi time-scale systems via Young measure limits, preprint (2002).

  16. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1989).

    Google Scholar 

  17. P. Grigolini, L. A. Lugiato, R. Mannella, P. V. E. McClintock, M. Merri, and M. Pernigo, Fokker-Planck description of stochastic processes with colored noise, Phys. Rev. A 38:1966(1988).

    Google Scholar 

  18. O. Hald and R. Kupferman, Existence of orthogonal dynamics, preprint (2002).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Just, W., Gelfert, K., Baba, N. et al. Elimination of Fast Chaotic Degrees of Freedom: On the Accuracy of the Born Approximation. Journal of Statistical Physics 112, 277–292 (2003). https://doi.org/10.1023/A:1023635805818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023635805818

Navigation