Skip to main content

Effects of Bounded Random Perturbations on Discrete Dynamical Systems

  • Chapter
  • First Online:
Bounded Noises in Physics, Biology, and Engineering

Abstract

In this chapter we discuss random perturbations and their effect on dynamical systems. We focus on discrete time dynamics and present different ways of implementing the random dynamics, namely the dynamics of random uncorrelated noise and the dynamics of random maps. We discuss some applications in scattering and in escaping from attracting sets. As we shall see, the perturbations may dramatically change the asymptotic behaviour of these systems. In particular, in randomly perturbed non-hyperbolic scattering trajectories may escape from regions where otherwise they are expected to be trapped forever. The dynamics also gains hyperbolic-like characteristics. These are observed in the decay of survival probability as well as in the fractal dimension of singular sets. In addition, we show that random perturbations also trigger escape from attracting sets, giving rise to transport among basins. Along the chapter, we motivate the application of such processes. We finish by suggesting some possible further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More generally one should consider M to be a manifold.

  2. 2.

    Within the mathematical literature the random perturbations are defined in terms of spaces of maps. In this setting, we have a family of maps and the iteration is obtained by randomly selecting them. Thus it is said to be a family of random maps even when different sequences are applied to different orbits.

  3. 3.

    Because scattering dynamics are so closely related to scattering of particles in physical systems, we shall refer to the dynamics of initial conditions in a region of the phase space as dynamics of particles started in such region.

  4. 4.

    The term subdynamics is used here as a simplification of the splitting of the tangent bundle. See, for example, [4, 6].

  5. 5.

    In the case of discrete time dynamical systems, t ≡ n, the number of iterations.

  6. 6.

    We say artificially placed hole when the hole is defined as a region [3537]. Our intention is just to contrast to the case discussed in [20] and presented in Sect. 10.4, where the hole is given by the random perturbations.

References

  1. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  2. Arnold, L.: Random Dynamical Systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  3. Romeiras, F.J., Grebogi, C., Ott, E.: Phys. Rev. A 41, 784 (1990)

    Article  MathSciNet  Google Scholar 

  4. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  5. Lau, Y.T., Finn, J.M., Ott, E.: Phys. Rev. Lett. 66, 978 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC Press, FL (1999)

    MATH  Google Scholar 

  7. Motter, A.E., Lai, Y.-C., Grebogi, C.: Phys. Rev. E 68, 056307 (2003)

    Article  MathSciNet  Google Scholar 

  8. Motter, A.E., Lai, Y.-C.: Phys. Rev. E 65, 015205 (2002)

    Article  Google Scholar 

  9. Rodrigues, C.S., de Moura, A.P.S., Grebogi, C.: Phys. Rev. E 82, 026211 (2010)

    Article  MathSciNet  Google Scholar 

  10. Poon, L., Grebogi, C.: Phys. Rev. Lett 75 4023 (1995)

    Article  Google Scholar 

  11. Feudel, U., Grebogi, C.: Chaos 7, 597 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Seoane, J.M., Huang, L., Suanjuan, M.A.F., Lai, Y.-C.: Phys. Rev. E 79, 047202 (2009)

    Article  Google Scholar 

  13. Kraut, S., Grebogi, C.: Phys. Rev. Lett. 92, 234101 (2004)

    Article  Google Scholar 

  14. Kraut, S., Grebogi, C.: Phys. Rev. Lett. 93, 250603 (2004)

    Article  Google Scholar 

  15. Altmann, E.G., Kantz, H.: Europhys. Lett. 78, 10008 (2007)

    Article  Google Scholar 

  16. Feller, W.: Introduction to Probability Theory and Applications. Wiley, New York (2001)

    Google Scholar 

  17. de Moura, A.P.S., Grebogi, C.: Phys. Rev. E 70, 36216 (2004)

    Article  Google Scholar 

  18. Seoane, J.M., Sanjuán, M.A.F.: Int. J. Bifurcat. Chaos 20, 2783 (2008)

    Article  Google Scholar 

  19. Grebogi, C., McDonald, S.W., Ott, E., Yorke, J.A.: Phys. Lett 99A, 415 (1983)

    Article  MathSciNet  Google Scholar 

  20. Rodrigues, C.S., Grebogi, C., de Moura, A.P.S.: Phys. Rev. E 82, 046217 (2010)

    Article  MathSciNet  Google Scholar 

  21. Hanggi, P.: J. Stat. Phys. 42, 105 (1986)

    Article  MathSciNet  Google Scholar 

  22. Demaeyer, J., Gaspard, P.: Phys. Rev. E 80, 031147 (2009)

    Article  Google Scholar 

  23. Kramers, H.A.: Phys. (Utrecht) 7, 284 (1940)

    Google Scholar 

  24. Grasberger, P.: J. Phys. A 22, 3283 (1989)

    Article  MathSciNet  Google Scholar 

  25. Kraut, S., Feudel, U., Grebogi, C.: Phys. Rev. E 59, 5253 (1999)

    Article  Google Scholar 

  26. Kraut, S., Feudel, U.: Phys. Rev. E 66, 015207 (2002)

    Article  MathSciNet  Google Scholar 

  27. Beale, P.D.: Phys. Rev. A 40, 3998 (1989)

    Article  MathSciNet  Google Scholar 

  28. Nagao, N., Nishimura, H., Matsui, N.: Neural Process. Lett. 12, 267 (2000); Schiff, S.J., Jerger, K., Duong, D.H., et al.: Nature 370, 615 (1994)

    Google Scholar 

  29. Peters, O., Christensen, K.: Phys. Rev. E 66, 036120 (2002); Bak, P., Christensen, K., Danon, L., Scanlon, T.: Phys. Rev. Lett 88, 178501–1 (2002); Anghel, M.: Chaos Solit. Fract. 19, 399 (2004)

    Google Scholar 

  30. Billings, L., Bollt, E.M., Schwartz, I.B.: Phys. Rev. Lett 88, 234101 (2002); Billings, L., Schwartz, I.B.: Chaos 18, 023122 (2008)

    Google Scholar 

  31. Kac, M.: Probability and Related Topics in Physical Sciences, Chap. IV. Intersciences Publishers, New York (1959)

    MATH  Google Scholar 

  32. Zaslavskii, G.M.: Phys. Lett. A 69, 145 (1978); Chirikov, B.: Phys. Rep. A 52, 265 (1979)

    Google Scholar 

  33. Rodrigues, C.S., de Moura, A.P.S., Grebogi, C.: Phys. Rev. E 80, 026205 (2009)

    Article  Google Scholar 

  34. Zmarrou, H., Homburg, A.J.: Ergod. Theor. Dyn. Sys. 27, 1651 (2007); Discrete Cont. Dyn. Sys. B10, 719 (2008)

    Google Scholar 

  35. Altmann, E.G., Tél, T.: Phys. Rev. Lett. 100, 174101 (2008)

    Article  Google Scholar 

  36. Altmann, E.G., Tél, T.: Phys. Rev. E 79, 016204 (2009)

    Article  MathSciNet  Google Scholar 

  37. Altmann, E.G., Endler, A.: Phys. Rev. Lett. 105, 255102 (2010)

    Article  Google Scholar 

  38. Pianigiani, G., Yorke, J.A.: Trans. Am. Math. Soc. 252, 351 (1979)

    MathSciNet  MATH  Google Scholar 

  39. Altmann, E.G., Leitão, J.C., Lopes, J.V.: pre-print: arXiv:1203.1791v1 (2012) -To appear in “Chaos” special issue: “Statistical Mechanics and Billiard-Type Dynamical Systems”

    Google Scholar 

  40. Rodrigues, C.S., Grebogi, C., de Moura, A.P.S., Klages, R.: Pre-print (2011)

    Google Scholar 

  41. Kruscha, A., Kantz, H., Ketzmerick, R.: Phys. Rev. E 85, 066210 (2012)

    Article  Google Scholar 

  42. Schelin, A.B., Károlyi, Gy., de Moura, A.P.S., Booth, N.A., Grebogi, C.: Phys. Rev. E 80, 016213 (2009)

    Google Scholar 

  43. Jost, J., Kell, M., Rodrigues, C.S.: Pre-print: arXiv:1207.5003

    Google Scholar 

  44. Lamb, J.S.W., Rasmussen, M., Rodrigues, C.S.: Pre-print: arXiv:1105.5018

    Google Scholar 

Download references

Acknowledgements

C.S.R. is grateful to J. Jost, R. Klages, M. Kell, J. Lamb, M. Rasmussen, and P. Ruffino for inspiring discussions along these subprojects and acknowledges the financial support from the University of Aberdeen and from the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian S. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rodrigues, C.S., de Moura, A.P.S., Grebogi, C. (2013). Effects of Bounded Random Perturbations on Discrete Dynamical Systems. In: d'Onofrio, A. (eds) Bounded Noises in Physics, Biology, and Engineering. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7385-5_10

Download citation

Publish with us

Policies and ethics