Skip to main content
Log in

The Riemann Surface of the Chiral Potts Model Free Energy Function

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In a recent paper we derived the free energy or partition function of the N-state chiral Potts model by using the infinite lattice “inversion relation” method, together with a non-obvious extra symmetry. This gave us three recursion relations for the partition function per site T pq of the infinite lattice. Here we use these recursion relations to obtain the full Riemann surface of T pq . In terms of the t p ,t q variables, it consists of an infinite number of Riemann sheets, each sheet corresponding to a point on a (2N−1)-dimensional lattice (for N>2). The function T pq is meromorphic on this surface: we obtain the orders of all the zeros and poles. For N odd, we show that these orders are determined by the usual inversion and rotation relations (without the extra symmetry), together with a simple linearity ansatz. For N even, this method does not give the orders uniquely, but leaves only [(N+4)/4] parameters to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. J. Baxter, Free energy of the solvable chiral Potts model, J. Stat. Phys. 52:639–667 (1988).

    Google Scholar 

  2. R. J. Baxter, Calculation of the Eigenvalues of the Transfer Matrix of the Chiral Potts Model, Proc. Fourth Asia-Pacific Physics Conference (Seoul, Korea, 1990), Vol. 1 (World-Scientific, Singapore, 1991), pp. 42–58.

    Google Scholar 

  3. R. J. Baxter, Chiral Potts model: Eigenvalues of the transfer matrix, Phys. Lett. A 146:110–114 (1990).

    Google Scholar 

  4. R. J. Baxter, Equivalence of the two results for the free energy of the chiral Potts model, J. Stat. Phys. 98:513–535 (2000).

    Google Scholar 

  5. H. Au-Yang, B.-Q. Jin, and J. H. H. Perk, Baxter's solution for the free energy of the chiral Potts model, J. Stat. Phys. 102:471–499 (2001).

    Google Scholar 

  6. R. J. Baxter, The "inversion relation" method for obtaining the free energy of the chiral Potts model, cond-mat/0212075, to appear in Phys. A.

  7. R. J. Baxter, The inversion relation method for some two-dimensional exactly solved models in lattice statistics, J. Stat. Phys. 28:1–41 (1982).

    Google Scholar 

  8. R. J. Baxter, Elliptic parametrization for the three-state chiral Potts model, in Integrable Quantum Field Theories, L. Bonara et al., eds. (Plenum Press, New York, 1993), pp. 27–37.

    Google Scholar 

  9. R. J. Baxter, Hyperelliptic Function Parametrization for the Chiral Potts Model, Proc. Intnl. Congress of Mathematicians, Kyoto, 1990 (Springer-Verlag, Tokyo, 1990), pp. 1305–1317.

    Google Scholar 

  10. R. J. Baxter, Elliptic parametrization of the three-state chiral Potts model, in Integrable Quantum Field Theories, L. Bonora et al., eds. (Plenum Press, New York, 1993), pp. 27–37.

    Google Scholar 

  11. R. J. Baxter, Some hyperelliptic function identities that occur in the chiral Potts model, J. Phys. A. 31:6807–6818 (1998).

    Google Scholar 

  12. R. J. Baxter, J. H. H. Perk, and H. Au-Yang, New solutions of the star-triangle relations for the chiral Potts model, Phys. Lett. A 128:138–142 (1988).

    Google Scholar 

  13. R. J. Baxter, V. V. Bazhanov, and J. H. H. Perk, Functional relations for transfer matrices of the chiral Potts model, Internat. J. Modern Phys. B 4:807–870 (1990).

    Google Scholar 

  14. R. J. Baxter, Superintegrable chiral Potts model: Thermodynamic properties, an "inverse model," and a simple associated Hamiltonian, J. Stat. Phys. 57:1–39 (1989).

    Google Scholar 

  15. S. Howes, L. P. Kadanoff, and M. den Nijs, Quantum model for commensurate-incommensurate transitions, Nuclear Phys. B 215[FS7]:169–208 (1983).

    Google Scholar 

  16. G. Albertini, B. M. McCoy, J. H. H. Perk, and S. Tang, Excitation spectrum and order parameter for the integrable N-state chiral Potts model, Nuclear Phys. B 314:741–763 (1989).

    Google Scholar 

  17. M. Henkel and J. Lacki, Integrable chiral Zn quantum chains and a new class of trigonometric sums, Phys. Lett. A 138:105–109 (1989).

    Google Scholar 

  18. M. Jimbo, T. Miwa, and A. Nakayashiki, Difference equations for the correlation functions of the eight-vertex model, J. Phys. A 26:2199–2210 (1993).

    Google Scholar 

  19. R. J. Baxter, Functional relations for the order parameters of the chiral Potts model, J. Stat. Phys. 91:499–524 (1998).

    Google Scholar 

  20. R. J. Baxter, Functional relations for the order parameters of the chiral Potts model: low temperature expansions, Phys. A 260:117–130 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, R.J. The Riemann Surface of the Chiral Potts Model Free Energy Function. Journal of Statistical Physics 112, 1–26 (2003). https://doi.org/10.1023/A:1023611702183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023611702183

Navigation