Skip to main content
Log in

A New Method for Analysis of the Fluid Interaction with a Deformable Membrane

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The lattice Boltzmann cellular automaton method has been successfully extended for analysis of fluid interactions with a deformable membrane or web. The hydrodynamic forces on the solid web are obtained through computation of the fluid flow stress at the moving boundary using the lattice Boltzmann method. Analysis of solid boundary deformation or vibration due to hydrodynamic force is based on Newtonian dynamics and a molecular dynamic type approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. B. Chang, P. M. Moretti, Tappi March, 231, (1991).

  2. Y. B. Chang, P. M. Moretti, Sheet Flutter & Windage Problems Seminar. Tappi notes, 14 (1991). Web Handling, ASME 67 (1992).

  3. Y. B. Chang, “An Experimental and Analytical Study of Web Flutter,” Ph.D. Dissertation, School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater (1990).

    Google Scholar 

  4. A. J. C. Ladd, J. Fluid Mech., “Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part I,” 271:285 (1994).

    Google Scholar 

  5. A. J. C. Ladd, J. Fluid Mech., “Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part II,” 271:311 (1994).

    Google Scholar 

  6. U. Frisch, B. Hasslacher, and Y. Poemeau, Phys. Rev. Lett., “Lattice-Gas Automaton for the Navier Stokes Equation,” 56:1505 (1986).

    Google Scholar 

  7. S. Wolfram, J. Stat. Phys., “Cellular Automaton Fluids 1: Basic Theory,” 45:471 (1986).

    Google Scholar 

  8. G. McNamara, and G. Zanetti, Phys. Rev. Lett., “Use of the Boltzmann Equation to Simulate Lattice-Gas Automaton,” 61:2332 (1988).

    Google Scholar 

  9. P. Bhatnagar, E. P. Gross, and M. K. Krook, Phys. Rev., “A Model for Collision Processes in Gas: I, Small amplitude Processes in Charged and Neutral One-Component Systems,” 94:511 (1954).

    Google Scholar 

  10. Shuling Hou, Qisu Zou, Shixi Chen, Gary D. Doolen and A. Cogley, “Simulation of Incompressible Navier-Stokes Fluid Flows Using a Lattice Boltzmann Method” J. Computational Physics 118:329 (1993).

    Google Scholar 

  11. C. K. Aidun and Y. Lu, “Lattice Boltzmann Simulation of Solid Suspensions with Impermeable Boundaries” J. Statistical Physics 81:(no. 1/2), 49, (1995).

    Google Scholar 

  12. C. K. Aidun, Y. Lu, and E.-J. Ding, “Dynamic Simulation of Particules Suspended in Fluid,” Proc. of the 6th International Symp. on Solid-Liquid Flows, FEDSM/ASME, Vancouver, Canada, June 22, 1997.

  13. H. L. Dryden, F. P. Murnaghan, and H. Bateman, Hydro-dynamics (1956).

  14. D. H. Heermann, Computer Simulation Methods in Theoretical Physics, Springer-Verlag Berlin Heidelberg New York (1986).

  15. R. W. Hockney, Methods Comput. Phys. 9:136 (1970), P. Potter, Computational Physics, Wiley, New York, Verlet, L. Phys. Rev. 165:201 (1968), 159:98 (1967).

    Google Scholar 

  16. M. Poliashenko and C. K. Aidun, “Computational Dynamics of Ordinary Differential Equations,” International J. Bifurcation and Chaos 5:1 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aidun, C.K., Qi, D.W. A New Method for Analysis of the Fluid Interaction with a Deformable Membrane. Journal of Statistical Physics 90, 145–158 (1998). https://doi.org/10.1023/A:1023299617476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023299617476

Navigation