Skip to main content
Log in

Percolation and Minimal Spanning Trees

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Consider a random set \(V_n \) of points in the box [n, −n)d, generated either by a Poisson process with density p or by a site percolation process with parameter p. We analyze the empirical distribution function F n of the lengths of edges in a minimal (Euclidean) spanning tree \(T_n \) on \(V_n\). We express the limit of F n, as n → ∞, in terms of the free energies of a family of percolation processes derived from \(V_n\) by declaring two points to be adjacent whenever they are closer than a prescribed distance. By exploring the singularities of such free energies, we show that the large-n limits of the moments of F n are infinitely differentiable functions of p except possibly at values belonging to a certain infinite sequence (p c(k): k ≥ 1) of critical percolation probabilities. It is believed that, in two dimensions, these limiting moments are twice differentiable at these singular values, but not thrice differentiable. This analysis provides a rigorous framework for the numerical experimentation of Dussert, Rasigni, Rasigni, Palmari, and Llebaria, who have proposed novel Monte Carlo methods for estimating the numerical values of critical percolation probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Aizenman and G. R. Grimmett, Strict monotonicity for critical points in percolation and ferromagnetic models, Journal of Statistical Physics 63:817–835 (1991).

    Google Scholar 

  2. D. Aldous and J. M. Steele, Asymptotics for Euclidean minimal spanning trees on random points, Probability Theory and Related Fields 92:247–258 (1992).

    Google Scholar 

  3. K. S. Alexander, Percolation and minimal spanning forests in infinite graphs, Annals of Probability 23:87–104 (1995).

    Google Scholar 

  4. K. S. Alexander, The RSW theorem for continuum percolation and the CLT for Euclidean spanning trees, Annals of Applied Probability 6:466–494 (1996).

    Google Scholar 

  5. J. T. Chayes, L. Chayes, and C. M. Newman, Bernoulli percolation above threshold: An invasion percolation analysis, Annals of Probability 15:1272–1287 (1987).

    Google Scholar 

  6. D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes (Springer, New York, 1988).

    Google Scholar 

  7. A. Dolan and J. Aldous, Networks and Algorithms (Wiley, Chichester, 1993).

    Google Scholar 

  8. G. Dussert, G. Rasigni, and M. Rasigni, Minimal spanning tree approach to percolation and conductivity threshold, Physics Letters A 139:35–38 (1989).

    Google Scholar 

  9. G. Dussert, G. Rasigni, M. Rasigni, J. Palmari, and A. Llebaria, Minimal spanning tree: A new approach for studying order and disorder, Physical Review B 34:3528–3531 (1986).

    Google Scholar 

  10. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed. (Wiley, New York, 1968).

    Google Scholar 

  11. G. R. Grimmett, Percolation (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  12. G. R. Grimmett, Percolation and disordered systems, École d'Été de Probabilités de Saint Flour XXVI-1996 (P. Bernard, ed.), Lecture Notes in Mathematics, No. 1665, Springer, Berlin, 1997, pp. 153–300.

    Google Scholar 

  13. G. R. Grimmett and J. M. Marstrand, The supercritical phase of percolation is well behaved, Proceedings of the Royal Society (London), Series A 430:439–457 (1990).

    Google Scholar 

  14. G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed. (Oxford University Press, Oxford, 1992).

    Google Scholar 

  15. P. Hall, Clump counts in a mosaic, Annals of Probability 14:424–458 (1986).

    Google Scholar 

  16. C. d'Iribarne, G. Rasigni, and M. Rasigni, Determination of site percolation transitions for 2D mosaics by means of minimal spanning tree approach, Physics Letters A 209:95–98 (1995).

    Google Scholar 

  17. H. Kesten, Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982).

    Google Scholar 

  18. H. Kesten and S. Lee, The central limit theorem for weighted minimal spanning trees on random points, Annals of Applied Probability 6:495–527 (1996).

    Google Scholar 

  19. J. F. C. Kingman, Poisson Processes (Oxford University Press, Oxford, 1993).

    Google Scholar 

  20. T. M. Liggett, R. H. Schonmann, and A. Stacey, Domination by product measures, Annals of Probability 25:71–95 (1997).

    Google Scholar 

  21. R. Meester and R. Roy, Continuum Percolation (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  22. M. Penrose, Continuum percolation and Euclidean minimal spanning trees in high dimensions, Annals of Applied Probability 6:528–544 (1996).

    Google Scholar 

  23. M. Penrose, The longest edge of the random minimal spanning tree, Annals of Probability 7:340–361 (1997).

    Google Scholar 

  24. L. Russo, A note on percolation, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 43:39–48 (1978).

    Google Scholar 

  25. J. M. Steele, Growth rates of Euclidean minimal spanning trees with power weighted edges, Annals of Probability 16:1767–1787 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezuidenhout, C., Grimmett, G. & Löffler, A. Percolation and Minimal Spanning Trees. Journal of Statistical Physics 92, 1–34 (1998). https://doi.org/10.1023/A:1023092317419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023092317419

Navigation