Skip to main content
Log in

An Equation for the Dissipation Rate Correlation and Its Implications for the Intermittency Exponent μ in Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive an equation satisfied by the dissipation rate correlation function, \(\left\langle {\varepsilon (\vec x + \vec r,t + \tau )\varepsilon (\vec x,t)} \right\rangle \) for the homogeneous, isotropic state of fully-developed turbulence from the the Navier–Stokes equation. In the equal time limit we show that the equation leads directly to two intermittency exponents μ 1=2−ζ 6 and μ 2=z4ζ 4, where the ζ's are exponents of velocity structure functions and z4 is a dynamical exponent characterizing the fourth order structure function. We discuss the contributions of the pressure terms to the equation and the consequences of hyperscaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. Frisch, Turbulence (Cambridge, New York, 1995).

    Google Scholar 

  2. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (MIT Press, Cambridge, 1975).

    Google Scholar 

  3. M. Nelkin, Adv. Phys. 43:143-181 (1994).

    Google Scholar 

  4. G. Stolovitzky and K. R. Sreenivasan, Rev. Mod. Phys. 66:229-240 (1994).

    Google Scholar 

  5. K. R. Sreenivasan and P. Kailasanath, Phys. Fluids A 5:512-513 (1993).

    Google Scholar 

  6. The spatio-temporal behavior of S2(r,τ) was considered through an exact equation in S. Chandrasekhar, Proc. Roy. Soc. (London) 229:1(1955).

    Google Scholar 

  7. F. Hayot and C. Jayaprakash, Phys. of Fluids 12:327-335 (2000).

    Google Scholar 

  8. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1986); note the neglect of the term νd2 S2/dr2 in the inertial range on p. 140.

    Google Scholar 

  9. See p. 43 of Frisch in ref. 1.

  10. V. S. L'vov, E. Podivilov, and I. Procaccia, Phys. Rev. E 55:7030-7035 (1997).

    Google Scholar 

  11. F. Hayot and C. Jayaprakash, Phys. Rev. E 56:227(1997) where the τ=0 limit of dynamical structure functions was considered.

    Google Scholar 

  12. H. Tennekes, J. Fluid Mech. 67:561-567 (1975).

    Google Scholar 

  13. See, M. E. Fisher, in Collective Properties of Physical Systems, B. Lundqvist and S. Lundqvist, eds. (Academic, N.Y., 1974), p. 23.

    Google Scholar 

  14. M. Nelkin and T. L. Bell, Phys. Rev. A 17:363-369 (1978). See also, U. Frisch, P.-L. Sulem, and M. Nelkin, J. Fluid Mech. 87:719-736 (1978).

    Google Scholar 

  15. V. L'vov and I. Procaccia, Phys. Rev. Lett. 76:2898-2901 (1996);V. L'vov and I. Procaccia Phys. Rev. E 53: 3468-3490 (1995); V. L'vov and I. Procaccia Phys. Rev. Lett. 77:3541–44 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaprakash, C., Hayot, F. An Equation for the Dissipation Rate Correlation and Its Implications for the Intermittency Exponent μ in Turbulence. Journal of Statistical Physics 111, 371–386 (2003). https://doi.org/10.1023/A:1022269427387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022269427387

Navigation