Skip to main content
Log in

Silicification and biosilicification

  • Published:
Silicon Chemistry

Abstract

Biosilicification takes place at or very close pH 7.0 and under ambient conditions of temperature and pressure in vivo. The silicic acid transporters and the proteins facilitating biosilicification in diatoms have been identified. Silica synthesis under mild conditions in vitro has been demonstrated using synthetic polymers with control over the resulting silica morphology. The results presented herein show that the silica synthesis in vitro is not specific to particular enzymes/polypeptides due to their particular chemical structure and activity but that many other synthetic macromolecules are also capable of facilitating silica formation at neutral pH. We also report the synthesis of organic-inorganic hybrid materials that have potential in optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iler, R.K. 1979 The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry.New York: John Wiley & Sons. ISBN 047102404X.

    Google Scholar 

  2. Brinker, C.J. & Scherer, G.W. 1990 Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Boston: Academic Press. ISBN 0121349705.

    Google Scholar 

  3. Round, F.E., Crawford, R.M. & Mann, D.G. 1990 The Diatoms, Biology and Morphology of the Genera.NewYork: Cambridge University Press. ISBN 0521363187.

    Google Scholar 

  4. Simpson, T.L. & Volcani, B.E. editors 1981 Silicon and Siliceous Structures in Biological Systems. New York: Springer-Verlag. ISBN 0387905928.

    Google Scholar 

  5. Hildebrand, M. 2000 Silicic acid transport and its control during cell wall silicification in diatoms. In Biomineralization: From Biology to Biotechnology and Medical Application. Ed. E.J. Baeuerlein, pp. 171. New York: Wiley-VCH. ISBN 3527299874.

    Google Scholar 

  6. Martin-Jezequel, V., Hildebrand, M. & Brzezinski, M.A. 2000 J. Phycol. 36 (5), 821-840.

    Google Scholar 

  7. (a) Kroger, N., Deutzmann, R. & Sumper, M. 1999 Science 286, 1129-1132; (b) Harrison (formerly Perry), C.C. 1996 Phytochemistry 41 (1), 37–42; (c) Shimizu, K. & Morse, D.E. 2000 The biological and biomimetic synthesis of silica and other polysiloxanes. In Biomineralization: From Biology to Biotechnology and Medical Application. Ed. E.J. Baeuerlein, pp. 207. New York: Wiley-VCH. ISBN 3527299874.

    Google Scholar 

  8. Tacke, R. 1999 Angew.Chem.Int.Ed. 38 (20), 3015-3018.

    Google Scholar 

  9. Patwardhan, S.V., Mukherjee, N. & Clarson, S.J. 2002 Effect of process parameters on the polymer mediated synthesis of silica at neutral pH. Silicon Chemistry 1 (1), 47-54.

    Google Scholar 

  10. Patwardhan, S.V., Mukherjee, N. & Clarson, S.J. 2001 J. Inorg. Organomet. Polym. 11 (3), 193-198.

    Google Scholar 

  11. Cha, J.N., Stucky, G.D., Morse, D.E. & Deming, T.J. 2000 Nature 403, 289-292.

    Google Scholar 

  12. Patwardhan, S.V. & Clarson, S.J., manuscript in preparation.

  13. Brott, L.L., Pikas, D.J., Naik, R.R., Kirkpatrick, S.M., Tom-lin, D.W., Whitlock, P.W., Clarson, S.J. & Stone, M.O. 2001 Nature 413, 291-293.

    Google Scholar 

  14. Clarson, S.J., Whitlock, P.W., Patwardhan, S.V., Brott, L.L., Naik, R.R. & Stone, M.O. 2002 Polymeric Materials: Science & Engineering 86, 81.

    Google Scholar 

  15. Whitlock, P.W., Patwardhan, S.V. & Clarson, S.J., unpublished data.

  16. Hildebrand, M., private communications.

  17. Naik, R.R., Brott, L.L., Clarson, S.J. & Stone, M.O. 2002 Journal of Nanoscience and Nanotechnology 2 (1), 95-100.

    Google Scholar 

  18. Kroger, N., Deutzmann, R., Bergsdorf, C. & Sumper, M. 2000 PNAS, 97, 14 133-14 138.

    Google Scholar 

  19. Patwardhan, S.V. & Clarson, S.J. 2002 Polym. Bull. 48, 367-371.

    Google Scholar 

  20. Patwardhan, S.V., Mukherjee, N. & Clarson, S.J. 2000 J. Inorg. Organomet. Polym. 11 (2), 117-121.

    Google Scholar 

  21. Patwardhan, S.V., 2002, MS Thesis, Department of Material Science and Engineering, University of Cincinnati, OH, U.S.A.

    Google Scholar 

  22. Baur, J.W., Durstock, M.F., Taylor, B., Spry, R.J., McKeller, R., Mobley, F., Dudis, D., Franks, M., Clarson, S.J. & Chiang, L.Y. 2000 Polymer Preprints 41 (1), 831.

    Google Scholar 

  23. Patwardhan, S.V., Mukherjee, N., Durstock, M.F., Chiang, L.Y. & Clarson, S.J. J. Inorg. Organomet. Polym., in press.

  24. Patwardhan, S.V. & Clarson, S.J. J. Inorg. Organomet. Polym., submitted.

  25. Durstock, M.F. & Rubner, M.F. 1997 Proceedings of SPIE 3148, 126-131.

    Google Scholar 

  26. Shiratori, S.S. & Rubner, M.F. 2000 Macromolecules 33, 4213-4219.

    Google Scholar 

  27. Patwardhan, S.V., Durstock, M.F. & Clarson, S.J. 2002 Silicification and biosilicification Part 2. Silicification at pH 7 in the presence of a cationically charged polymer in solution and immobilized on substrates. In Synthesis and Properties of Silicones and Silicone-Modified Materials. Ed. S.J. Clarson, J.J. Fitzgerald, M.J. Owen, S.D. Smith & M.E. Van Dyke, ACS Symposium Series, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patwardhan, S.V., Clarson, S.J. Silicification and biosilicification. Silicon Chemistry 1, 207–214 (2002). https://doi.org/10.1023/A:1021243810915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021243810915

Navigation