Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 8635 Accesses

Abstract

The discovery of the catalytic capability in silicatein, a constituent of the protein axial filament occluded in biosilica of the marine demosponge Tethya aurantia, for hydrolysis and polycondensation of silicon alkoxides to yield silica, as well as its role as a template for silicon biomineralization brought about emergence of a new field, silicon biotechnology, as a part of marine biotechnology. This new discipline focuses on understanding the mechanisms controlling biomineralization of silicon elements and its application to the development of new routes to the synthesis of silicon-based materials under environmentally benign conditions. However, as demonstrated by recent studies, the capability of silicatein is not limited to the synthesis of silicon-based materials but is also applicable to the production of various metal oxide materials and organic polymers. Thus, silicon biotechnology represents technology involved in or inspired by silicatein and actually covers the synthesis of silicon-based materials as well as materials consisting of other elements. In this chapter, the molecular biological properties of silicatein and its possible mechanisms on silica polycondensation are summarized, and then a variety of examples of silicatein for the synthesis of silica as well as other materials in environmentally benign routes are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope

Cys:

cysteine

DNA:

deoxyribonucleic acid

EDX:

energy dispersive X-ray spectroscopy

GNO:

hydrated gallium nitrate

Glu-tag:

octaglutamic acid-tag

HA:

hydroxyapatite

His-tag:

hexahistidine-tag

NCN-Pt:

platinum-dimethylamino pincer complex

NTA:

nitrilotriacetic acid

Ni-NTA:

nickel nitrilotriacetic acid

OmpA:

outer membrane protein A

PCP-Pd:

paradium-diphenylphosphino pincer complex

PCR:

polymerase chain reaction

PDMS:

polydimetylsiloxane

PLA:

polylactide

PMSF:

phenylmethylsulfonyl fluoride

RNA:

ribonucleic acid

SDS-PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulfate

TEM:

transmission electron microscope

TEOS:

tetraethoxysilane

TMOS:

tetramethoxysilane

Ti(BALDH):

titanium (IV) bis(ammonium lactato) dihydroxide

UV:

ultraviolet

cDNA:

complementary DNA

mRNA:

messenger RNA

pI:

isoelectric point

r-silicatein:

recombinant silicatein

References

  1. P. Treguer, D.M. Nelson, A.J. Vanbennekom, D.J. Demaster, A. Leynaert, B. Queguiner: The silica balance in the world ocean – a reestimate, Science 268, 375–379 (1995)

    Article  CAS  Google Scholar 

  2. E.V. Armbrust, J.A. Berges, C. Bowler, B.R. Green, D. Martinez, N.H. Putnam, S.G. Zhou, A.E. Allen, K.E. Apt, M. Bechner, M.A. Brzezinski, B.K. Chaal, A. Chiovitti, A.K. Davis, M.S. Demarest, J.C. Detter, T. Glavina, D. Goodstein, M.Z. Hadi, U. Hellsten, M. Hildebrand, B.D. Jenkins, J. Jurka, V.V. Kapitonov, N. Kroger, W.W.Y. Lau, T.W. Lane, F.W. Larimer, J.C. Lippmeier, S. Lucas, M. Medina, A. Montsant, M. Obornik, M.S. Parker, B. Palenik, G.J. Pazour, P.M. Richardson, T.A. Rynearson, M.A. Saito, D.C. Schwartz, K. Thamatrakoln, K. Valentin, A. Vardi, F.P. Wilkerson, D.S. Rokhsar: The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism, Science 306, 79–86 (2004)

    Article  CAS  Google Scholar 

  3. C. Bowler, A.E. Allen, J.H. Badger, J. Grimwood, K. Jabbari, A. Kuo, U. Maheswari, C. Martens, F. Maumus, R.P. Otillar, E. Rayko, A. Salamov, K. Vandepoele, B. Beszteri, A. Gruber, M. Heijde, M. Katinka, T. Mock, K. Valentin, F. Verret, J.A. Berges, C. Brownlee, J.P. Cadoret, A. Chiovitti, C.J. Choi, S. Coesel, A. De Martino, J.C. Detter, C. Durkin, A. Falciatore, J. Fournet, M. Haruta, M.J.J. Huysman, B.D. Jenkins, K. Jiroutova, R.E. Jorgensen, Y. Joubert, A. Kaplan, N. Kroger, P.G. Kroth, J. La Roche, E. Lindquist, M. Lommer, V. Martin-Jezequel, P.J. Lopez, S. Lucas, M. Mangogna, K. McGinnis, L.K. Medlin, A. Montsant, M.P. Oudot-Le Secq, C. Napoli, M. Obornik, M.S. Parker, J.L. Petit, B.M. Porcel, N. Poulsen, M. Robison, L. Rychlewski, T.A. Rynearson, J. Schmutz, H. Shapiro, M. Siaut, M. Stanley, M.R. Sussman, A.R. Taylor, A. Vardi, P. von Dassow, W. Vyverman, A. Willis, L.S. Wyrwicz, D.S. Rokhsar, J. Weissenbach, E.V. Armbrust, B.R. Green, Y. Van De Peer, I.V. Grigoriev: The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature 456, 239–244 (2008)

    Article  CAS  Google Scholar 

  4. K.E. Apt, P.G. KrothPancic, A.R. Grossman: Stable nuclear transformation of the diatom Phaeodactylum tricornutum, Mol. Gen. Genet. 252, 572–579 (1996)

    CAS  Google Scholar 

  5. T.G. Dunahay, E.E. Jarvis, P.G. Roessler: Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila, J. Phycol. 31, 1004–1012 (1995)

    Article  CAS  Google Scholar 

  6. A. Falciatore, R. Casotti, C. Leblanc, C. Abrescia, C. Bowler: Transformation of nonselectable reporter genes in marine diatoms, Mar. Biotechnol. 1, 239–251 (1999)

    Article  CAS  Google Scholar 

  7. H. Fischer, I. Robl, M. Sumper, N. Kröger: Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (bacillariophyceae), J. Phycol. 35, 113–120 (1999)

    Article  CAS  Google Scholar 

  8. L.A. Zaslavskaia, J.C. Lippmeier, P.G. Kroth, A.R. Grossman, K.E. Apt: Transformation of the diatom Phaeodactylum tricornutum (bacillariophyceae) with a variety of selectable marker and reporter genes, J. Phycol. 36, 379–386 (2000)

    Article  CAS  Google Scholar 

  9. N. Poulsen, P.M. Chesley, N. Kröger: Molecular genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae), J. Phycol. 42, 1059–1065 (2006)

    Article  Google Scholar 

  10. A. Miyagawa-Yamaguchi, T. Okami, N. Kira, H. Yamaguchi, K. Ohnishi, M. Adachi: Stable nuclear transformation of the diatom Chaetoceros sp., Phycol. Res. 59, 113–119 (2011)

    Article  CAS  Google Scholar 

  11. M.L. Chiappino, B.E. Volcani: Studies on biochemistry and fine structure of silicia shell formation in diatoms. VII. Sequential cell-wall development in pennate Navicula pelliculosa, Protoplasma 93, 205–221 (1977)

    Article  Google Scholar 

  12. V. Martin-Jezequel, M. Hildebrand, M.A. Brzezinski: Silicon metabolism in diatoms: Implications for growth, J. Phycol. 36, 821–840 (2000)

    Article  CAS  Google Scholar 

  13. N. Kröger, R. Deutzmann, M. Sumper: Polycationic peptides from diatom biosilica that direct silica nanosphere formation, Science 286, 1129–1132 (1999)

    Article  Google Scholar 

  14. N. Kröger, S. Lorenz, E. Brunner, M. Sumper: Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis, Science 298, 584–586 (2002)

    Article  Google Scholar 

  15. N. Kröger, R. Deutzmann, C. Bergsdorf, M. Sumper: Species-specific polyamines from diatoms control silica morphology, Proc. Nat. Acad. Sci. USA 97, 14133–14138 (2000)

    Article  Google Scholar 

  16. A. Scheffel, N. Poulsen, S. Shian, N. Kröger: Nanopatterned protein microrings from a diatom that direct silica morphogenesis, Proc. Nat. Acad. Sci. USA 108, 3175–3180 (2011)

    Article  CAS  Google Scholar 

  17. D.E. Morse: Silicon biotechnology: Harnessing biological silica production to construct new materials, Trends Biotechnol. 17, 230–232 (1999)

    Article  CAS  Google Scholar 

  18. K. Shimizu, J. Cha, G.D. Stucky, D.E. Morse: Silicatein α: Cathepsin L-like protein in sponge biosilica, Proc. Nat. Acad. Sci. USA 95, 6234–6238 (1998)

    Article  CAS  Google Scholar 

  19. J.C. Weaver, D.E. Morse: Molecular biology of demosponge axial filaments and their roles in biosilicification, Microsc. Res. Tech. 62, 356–367 (2003)

    Article  CAS  Google Scholar 

  20. W.E.G. Müller, M. Rothenberger, A. Boreiko, W. Tremel, A. Reiber, H. Schröder: Formation of siliceous spicules in the marine demosponge Suberites domuncula, Cell Tis. Res. 321, 285–297 (2005)

    Article  Google Scholar 

  21. O.V. Kaluzhnaya, S.I. Belikov, H.C. Schröder, M. Wiens, M. Giovine, A. Krasko, I.M. Müller, W.E.G. Müller: Dynamics of skeleton formation in the lake baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies, Naturwissenschaften 92, 134–138 (2005)

    Article  CAS  Google Scholar 

  22. W.E.G. Müller, A. Boreiko, U. Schlossmacher, X.H. Wang, M.N. Tahir, W. Tremel, D. Brandt, J.A. Kaandorp, H.C. Schröder: Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: Relevance to biomineralization and the formation of biogenic silica, Biomaterials 28, 4501–4511 (2007)

    Article  Google Scholar 

  23. D. Kisailus, Q. Truong, Y. Amemiya, J.C. Weaver, D.E. Morse: Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor, Proc. Nat. Acad. Sci. USA 103, 5652–5657 (2006)

    Article  CAS  Google Scholar 

  24. G. Croce, A. Frache, M. Milanesio, L. Marchese, M. Causa, D. Viterbo, A. Barbaglia, V. Bolis, G. Bavestrello, C. Cerrano, U. Benatti, M. Pozzolini, M. Giovine, H. Amenitsch: Structural characterization of siliceous spicules from marine sponges, Biophys. J. 86, 526–534 (2004)

    Article  CAS  Google Scholar 

  25. S.V. Patwardhan, S.A. Holt, S.M. Kelly, M. Kreiner, C.C. Perry, C.F. van der Walle: Silica condensation by a silicatein α homologue involves surface-induced transition to a stable structural intermediate forming a saturated monolayer, Biomacromolecules 11, 3126–3135 (2010)

    Article  CAS  Google Scholar 

  26. M.M. Murr, D.E. Morse: Fractal intermediates in the self-assembly of silicatein filaments, Proc. Nat. Acad. Sci. USA 102, 11657–11662 (2005)

    Article  CAS  Google Scholar 

  27. M. Srivastava, O. Simakov, J. Chapman, B. Fahey, M.E.A. Gauthier, T. Mitros, G.S. Richards, C. Conaco, M. Dacre, U. Hellsten, C. Larroux, N.H. Putnam, M. Stanke, M. Adamska, A. Darling, S.M. Degnan, T.H. Oakley, D.C. Plachetzki, Y.F. Zhai, M. Adamski, A. Calcino, S.F. Cummins, D.M. Goodstein, C. Harris, D.J. Jackson, S.P. Leys, S.Q. Shu, B.J. Woodcroft, M. Vervoort, K.S. Kosik, G. Manning, B.M. Degnan, D.S. Rokhsar: The Amphimedon queenslandica genome and the evolution of animal complexity, Nature 466, 720–U723 (2010)

    Article  CAS  Google Scholar 

  28. W.E.G. Müller, A. Boreiko, X.H. Wang, S.I. Belikov, M. Wiens, V.A. Grebenjuk, U. Schlossmacher, H.C. Schröder: Silicateins, the major biosilica forming enzymes present in demosponges: Protein analysis and phylogenetic relationship, Gene 395, 62–71 (2007)

    Article  Google Scholar 

  29. O.V. Kalyuzhnaya, A.G. Krasko, V.A. Grebenyuk, V.B. Itskovich, N.A. Semiturkina, I.S. Solovarov, W.E.G. Müller, S.I. Belikov: Freshwater sponge silicateins: Comparison of gene sequences and exon-intron structure, Mol. Biol. 45, 567–575 (2011)

    Article  CAS  Google Scholar 

  30. W.E.G. Müller, C. Eckert, K. Kropf, X.H. Wang, U. Schlossmacher, C. Seckert, S.E. Wolf, W. Tremel, H.C. Schröder: Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): Electron-microscopic and biochemical studies, Cell Tis. Res. 329, 363–378 (2007)

    Article  Google Scholar 

  31. W.E.G. Müller, K.P. Jochum, B. Stoll, X.H. Wang: Formation of giant spicule from quartz glass by the deep sea sponge monorhaphis, Chem. Mater. 20, 4703–4711 (2008)

    Article  Google Scholar 

  32. W.E.G. Müller, X.H. Wang, K. Kropf, A. Boreiko, U. Schlossmacher, D. Brandt, H.C. Schröder, M. Wiens: Silicatein expression in the hexactinellid Crateromorpha meyeri: The lead marker gene restricted to siliceous sponges, Cell Tis. Res. 333, 339–351 (2008)

    Article  Google Scholar 

  33. W.E.G. Müller, X.H. Wang, Z. Burghard, J. Bill, A. Krasko, A. Boreiko, U. Schlossmacher, H.C. Schröder, M. Wiens: Bio-sintering processes in hexactinellid sponges: Fusion of bio-silica in giant basal spicules from Monorhaphis chuni, J. Struct. Biol. 168, 548–561 (2009)

    Article  Google Scholar 

  34. G.N. Veremeichik, Y.N. Shkryl, V.P. Bulgakov, S.V. Shedko, V.B. Kozhemyako, S.N. Kovalchuk, V.B. Krasokhin, Y.N. Zhuravlev, Y.N. Kulchin: Occurrence of a silicatein gene in glass sponges (Hexactinellida: Porifera), Mar. Biotechnol. 13, 810–819 (2011)

    Article  CAS  Google Scholar 

  35. J.L. Sumerel, W.J. Yang, D. Kisailus, J.C. Weaver, J.H. Choi, D.E. Morse: Biocatalytically templated synthesis of titanium dioxide, Chem. Mater. 15, 4804–4809 (2003)

    Article  CAS  Google Scholar 

  36. D. Kisailus, J.H. Choi, J.C. Weaver, W.J. Yang, D.E. Morse: Enzymatic synthesis and nanostructural control of gallium oxide at low temperature, Adv. Mater. 17, 314–318 (2005)

    Article  CAS  Google Scholar 

  37. R.L. Brutchey, E.S. Yoo, D.E. Morse: Biocatalytic synthesis of a nanostructured and crystalline bimetallic perovskite-like barium oxofluorotitanate at low temperature, J. Am. Chem. Soc. 128, 10288–10294 (2006)

    Article  CAS  Google Scholar 

  38. P. O'Leary, C.A. van Walree, N.C. Mehendale, J. Sumerel, D.E. Morse, W.C. Kaska, G. van Koten, R. Gebbink: Enzymatic immobilization of organometallic species: Biosilification of ncn- and pcp-pincer metal species using demosponge axial filaments, Dalton Trans., 4289–4291 (2009)

    Google Scholar 

  39. S.E. Wolf, U. Schlossmacher, A. Pietuch, B. Mathiasch, H.C. Schröder, W.E.G. Müller, W. Tremel: Formation of silicones mediated by the sponge enzyme silicatein-α, Dalton Trans. 39, 9245–9249 (2010)

    Article  CAS  Google Scholar 

  40. A. Rai, C.C. Perry: Facile fabrication of uniform silica films with tunable physical properties using silicatein protein from sponges, Langmuir 26, 4152–4159 (2010)

    Article  CAS  Google Scholar 

  41. A. Polini, S. Pagliara, A. Camposeo, A. Biasco, H.C. Schröder, W.E.G. Müller, D. Pisignano: Biosilica electrically-insulating layers by soft lithography-assisted biomineralisation with recombinant silicatein, Adv. Mater. 23, 4674–4678 (2011)

    Article  CAS  Google Scholar 

  42. P. Curnow, P.H. Bessette, D. Kisailus, M.M. Murr, P.S. Daugherty, D.E. Morse: Enzymatic synthesis of layered titanium phosphates at low temperature and neutral ph by cell-surface display of silicatein-α, J. Am. Chem. Soc. 127, 15749–15755 (2005)

    Article  CAS  Google Scholar 

  43. W.E.G. Müller, S. Engel, X.H. Wang, S.E. Wolf, W.G. Tremel, N.L. Thakur, A. Krasko, M. Divekar, H.C. Schröder: Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene, Biomaterials 29, 771–779 (2008)

    Article  Google Scholar 

  44. M.N. Tahir, P. Theato, W.E.G. Müller, H.C. Schröder, A. Janshoff, J. Zhang, J. Huth, W. Tremel: Monitoring the formation of biosilica catalysed by histidine-tagged silicatein, Chem. Commun., 2848–2849 (2004)

    Google Scholar 

  45. M.N. Tahir, P. Theato, W.E.G. Müller, H.C. Schröder, A. Borejko, S. Faiss, A. Janshoff, J. Huth, W. Tremel: Formation of layered titania and zirconia catalysed by surface-bound silicatein, Chem. Commun., 5533–5535 (2005)

    Google Scholar 

  46. M.N. Tahir, F. Natalio, H.A. Therese, A. Yella, N. Metz, M.R. Shah, E. Mugnaioli, R. Berger, P. Theato, H.C. Schröder, W.E.G. Müller, W. Tremel: Enzyme-mediated deposition of a TiO${}_{{2}}$ coating onto biofunctionalized WS${}_{{2}}$ chalcogenide nanotubes, Adv. Funct. Mater. 19, 285–291 (2009)

    Article  CAS  Google Scholar 

  47. R. Andre, M.N. Tahir, H.C.C. Schröder, W.E.G. Müller, W. Tremel: Enzymatic synthesis and surface deposition of tin dioxide using silicatein-α, Chem. Mater. 23, 5358–5365 (2011)

    Article  CAS  Google Scholar 

  48. M.I. Shukoor, F. Natalio, H.A. Therese, M.N. Tahir, V. Ksenofontov, M. Panthofer, M. Eberhardt, P. Theato, H.C. Schröder, W.E.G. Müller, W. Tremel: Fabrication of a silica coating on magnetic γ-Fe${}_{{2}}$O${}_{{3}}$ nanoparticles by an immobilized enzyme, Chem. Mater. 20, 3567–3573 (2008)

    Article  CAS  Google Scholar 

  49. H.C. Schröder, O. Boreiko, A. Krasko, A. Reiber, H. Schwertner, W.E.G. Müller: Mineralization of SaOS-2 cells on enzymatically (sillicatein) modified bioactive osteoblast-stimulating surfaces, J. Biomed. Mat. Res. Appl. Biomat. 75B, 387–392 (2005)

    Article  Google Scholar 

  50. F. Natalio, T. Link, W.E.G. Müller, H.C. Schröder, F.Z. Cui, X.H. Wang, M. Wiens: Bioengineering of the silica-polymerizing enzyme silicatein-α for a targeted application to hydroxyapatite, Acta Biomater. 6, 3720–3728 (2010)

    Article  CAS  Google Scholar 

  51. K. Mohri, M. Nakatsukasa, Y. Masuda, K. Agata, N. Funayama: Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: Differential mRNA expression of spicule-type-specific silicatein genes in ephydatia fluviatilis, Dev. Dyn. 237, 3024–3039 (2008)

    Article  CAS  Google Scholar 

  52. W.E.G. Müller, U. Schlossmacher, C. Eckert, A. Krasko, A. Boreiko, H. Ushijima, S.E. Wolf, W. Trernel, I.M. Muller, H.C. Schröder: Analysis of the axial filament in spicules of the demosponge Geodia cydonium: Different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes), Eur. J. Cell Biol. 86, 473–487 (2007)

    Article  Google Scholar 

  53. J.N. Cha, K. Shimizu, Y. Zhou, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, D.E. Morse: Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro, Proc. Nat. Acad. Sci. USA 96, 361–365 (1999)

    Article  CAS  Google Scholar 

  54. W.E.G. Müller, A. Boreiko, U. Schlossmacher, X.H. Wang, C. Eckert, K. Kropf, J.H. Li, H.C. Schröder: Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni, J. Exp. Biol. 211, 300–309 (2008)

    Article  Google Scholar 

  55. Y. Zhou, K. Shimizu, J.N. Cha, G.D. Stucky, D.E. Morse: Efficient catalysis of polysiloxane synthesis by silicatein alpha requires specific hydroxy and imidazole functionalities, Angew. Chem. Int. Ed. 38, 780–782 (1999)

    Article  CAS  Google Scholar 

  56. M. Fairhead, K.A. Johnson, T. Kowatz, S.A. McMahon, L.G. Carter, M. Oke, H. Liu, J.H. Naismith, C.F. van der Walle: Crystal structure and silica condensing activities of silicatein α-cathepsin l chimeras, Chem. Commun., 1765–1767 (2008)

    Google Scholar 

  57. E.M. Carlisle, W.F. Alpenfels: Requirement for silicon for bone-growth in culture, Fed. Proc. 37, 1123 (1978)

    Google Scholar 

  58. E.M. Carlisle: Silicon requirement for normal skull formation in chicks, J. Nutr. 110, 352–359 (1980)

    CAS  Google Scholar 

  59. M. Wiens, X.H. Wang, H.C. Schröder, U. Kolb, U. Schlossmacher, H. Ushijima, W.E.G. Müller: The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells, Biomaterials 31, 7716–7725 (2010)

    Article  CAS  Google Scholar 

  60. M. Wiens, X.H. Wang, U. Schlossmacher, I. Lieberwirth, G. Glasser, H. Ushijima, H.C. Schröder, W.E.G. Müller: Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells, Calcif. Tissue Int. 87, 513–524 (2010)

    Article  CAS  Google Scholar 

  61. M. Wiens, X.H. Wang, F. Natalio, H.C. Schröder, U. Schlossmacher, S.F. Wang, M. Korzhev, W. Geurtsen, W.E.G. Müller: Bioinspired fabrication of bio-silica-based bone-substitution materials, Adv. Eng. Mater. 12, B438–B450 (2010)

    Article  Google Scholar 

  62. A. Polini, S. Pagliara, A. Camposeo, R. Cingolani, X.H. Wang, H.C. Schröder, W.E.G. Müller, D. Pisignano: Optical properties of in-vitro biomineralised silica, Sci. Rep. 2, 1–6 (2012)

    Article  Google Scholar 

  63. M. Wiens, T. Link, T.A. Elkhooly, S. Isbert, W.E.G. Müller: Formation of a micropatterned titania photocatalyst by microcontact printed silicatein on gold surfaces, Chem. Commun. 48, 11331–11333 (2012)

    Article  CAS  Google Scholar 

  64. M.N. Tahir, M. Messerschmidt, M. Klein, V. Martinez, P. Theato, N. Metz, S. Hartmann, U. Kolb, V. Ksenofontov, F. Renz, W. Tremel: Synthesis and immobilization of molecular switches onto titaniumdioxide nanowires, Polyhedron 28, 1728–1733 (2009)

    Article  CAS  Google Scholar 

  65. R. Andre, M.N. Tahir, T. Link, F.D. Jochum, U. Kolb, P. Theato, R. Berger, M. Wiens, H.C. Schröder, W.E.G. Müller, W. Tremel: Chemical mimicry: Hierarchical 1D TiO${}_{{2}}$@ZrO${}_{{2}}$ core-shell structures reminiscent of sponge spicules by the synergistic effect of silicatein-α and silintaphin-1, Langmuir. 27, 5464–5471 (2011)

    Article  CAS  Google Scholar 

  66. M. Wiens, M. Bausen, F. Natalio, T. Link, U. Schlossmacher, W.E.G. Müller: The role of the silicatein-α interactor silintaphin-1 in biomimetic biomineralization, Biomaterials 30, 1648–1656 (2009)

    Article  CAS  Google Scholar 

  67. P. Curnow, D. Kisailus, D.E. Morse: Biocatalytic synthesis of poly(l-lactide) by native and recombinant forms of the silicatein enzymes, Angew. Chem. Int. Ed. 45, 613–616 (2006)

    Article  CAS  Google Scholar 

  68. L.A. Bawazer, M. Izumi, D. Kolodin, J.R. Neilson, B. Schwenzer, D.E. Morse: Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles, Proc. Nat. Acad. Sci. USA 109, E1705–E1714 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shimizu, K. (2015). Marine Silicon Biotechnology. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_61

Download citation

Publish with us

Policies and ethics