Skip to main content
Log in

Broken Lorentz Invariance and Metric Description of Interactions in a Deformed Minkowski Space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We discuss the possible breakdown of Lorentz invariance—at distances greater than the Planck length—from both the theoretical and the phenomenological point of view. The theoretical tool to deal with such a problem is provided by a “deformation” of the Minkowski metric, with parameters dependent on the energy of the physical system considered. Such a deformed metric realizes, for any interaction, the “solidarity principle” between interactions and spacetime geometry (usually assumed for gravitation), according to which the peculiar features of every interaction determine—locally—its own spacetinie structure. The generalized theory of relativity, based on the locally deformed Minkowski spacetime, is called “deformed special relativity” (DSR). In the first part of the paper, we give the foundations and the basic laws of DSR. In the second part, we analyze some experimental data, which admit an interpretation in terms of the DSR formalism and are, therefore, candidates for displaying a breakdown of the Lorentz symmetry. They are (i) the superluminal propagation of evanescent electromagnetic waves in waveguides, (ii) the meanlife of the KS 0, (iii) the Bose-Einstein correlation in pion production and (iv) the comparison of clock rates in the gravitational field of Earth. Such analysis provides us with the explicit forms of the related deformed metrics as functions of the energy, thus putting in evidence, in all four cases (and therefore for all four fundamental interactions), departures from the usual Minkowski metric. This preliminary evidence for a broken Lorentz invariance may be regarded as the signature of possible nonlocal effects involved in the processes examined. Moreover, the corresponding deformed metrics obtained by our analysis provide an effective dynamical description of the interactions (at least in the energy range considered).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. See, e.g., J. D. Bjorken and S. D. Drell, Relativistic Ouantum Fields (McGraw-Hill, New York, 1965), Sect. 11.1.

    Google Scholar 

  2. J. D. Bjorken, Ann. Phys. 24, 174 (1963).

    Google Scholar 

  3. D. I. Blokhintsev, Phys. Lett. 12, 272 (1964); Sov. Phys. Uspekhi 9, 405 (1966).

    Google Scholar 

  4. L B. Redei, Phys. Rev. 145, 999 (1966).

    Google Scholar 

  5. P. R. Phillips, Phys. Rev. 139, B491 (1965); P. R. Phillips and D. Woolum, Nuovo Cim. B 64, 28 (1969).

    Google Scholar 

  6. E. Recami and R. Mignani, Riv. Nuovo Cim. 4(2) (1974) and references therein.

  7. G. Yu. Bogoslovsky, Nuovo Cim. B 40, 99, 116 (1977). For a review, see G. Yu.Bogoslovsky, Fortschr. Phys. 42, 2 (1994).

    Google Scholar 

  8. For a review of Finsler's generalization of Riemannian spaces, see, e.g., M. Matsumoto, Foundation of Finsler Geometry and Special Finsler Spaces (Kaiseisha Otsu, 1986), and references therein.

  9. H. B. Nielsen and I. Picek, Phys. Lett. B 114, 141 (1982). Nucl. Phys. B 211, 269 (1983).

    Google Scholar 

  10. R.M. Santilli, Lett. Nuovo Cim. 37, 337 (1983); 38, 509 (1983).

    Google Scholar 

  11. For a review of isotopic theories, see R. M. Santilli, Elements of Hadronic Mechanics, Vols. I-III (Naukova Dumka, Kiev, 1994).

    Google Scholar 

  12. D. Y. Kim, Hadr. J. 1, 1343 (1978).

    Google Scholar 

  13. S. H. Aronson, G. J. Bock, H.-Y. Chang, and E. Fishbach, Phys. Rev. Lett. 48, 1306 (1982); Phys. Rev. D 28, 495 (1983).

    Google Scholar 

  14. E. Fishbach, D. Sudarsky, A. Szafas, C. Talmadge, and S. Aronson, Phys. Rev. Lett. 56(3), 1427 (1986).

    Google Scholar 

  15. N. Grossman et al., Phys. Rev. Lett. 59, 18 (1987).

    Google Scholar 

  16. F. Cardone, R. Mignani, and R.M. Santilli, J. Phys. G 18, L61, L141 (1992).

    Google Scholar 

  17. S. Coleman and S. L. Glashow, Phys. Lett. B 405, 249 (1997); S. L. Glashow, Nucl. Phys. (Proc. Suppl.) 70, 180 (1998); see also D. Colladay and V. A. Kostelecky, Phys. Rev. D 57, 3932 (1997).

    Google Scholar 

  18. B. Finzi, in Cinquant'anni di Relativitá, M. Pantaleo, ed. (Giunti, Firenze, 1955).pp. 194, 204.

  19. For reviews on both experimental and theoretical aspects of superluminal photon tunneling, see, e.g., G. Nimtz and W. Heiman, Prog. Quantum Electr. 21, 81 (1997); R. Y. Chiao and A. M. Steinberg, in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1997), Vol. 37, p. 346; V. S. Olkovsky and A. Agresti, in Tunneling and Its Implications, D. Mugnai, A. Ranfagni, and L. S. Schulman, eds. (World Scientific, Singapore, 1997), p. 327.

    Google Scholar 

  20. R. M. Santilli, Hadr. J. 15, 1 (1992).

    Google Scholar 

  21. F. Cardone and R. Mignani, JETP 83, 435 (1996) [Zh. Eksp. Teor. Fiz. 110, 793 (1996) ].

    Google Scholar 

  22. C. O. Alley, “Relativity and Clocks,” Proceedings of the 33rd Annual Symposium on Frequency Control ( Elec. Ind. Assoc. Washington, DC, 1979).

    Google Scholar 

  23. R. Penrose, The Emperor's New Mind (Oxford University Press, 1989).

  24. J. A. de Azcarrage and F. Rodenas, J. Phys. A 29, 1215 (1996).

    Google Scholar 

  25. F. Cardone and R. Mignani, On a nonlocal relativistic kinematics, INFN preprint 910 (Rome, Nov., 1992).

  26. F. Cardone, R. Mignani, and V. S. Olkhovski, J. de Phys. I (France) 7, 1211 (1997).

    Google Scholar 

  27. For experimental as well as theoretical reviews, see, e.g., B. Lörstad, Correlations and Multiparticle Production (CAMP), M. Pluenner, S. Raha, and R.M. Weiner, eds. (World Scientific, Singapore, 1991); D. H. Boal, C. K. Gelbke, and B. K. Jennings, Rev. Mod.Phys. 62, 553 (1990), and references therein.

    Google Scholar 

  28. See M. Fincke-Keeler, Bose-Einstein Correlations in Proton-Antiproton Collisions at ℚs= 200 to 900 GeV, Ph.D. thesis (University of Victoria, Canada, 1989).

    Google Scholar 

  29. C.M. Will, Theory and Experiment in Gravitational Physics, (Cambrdidge University Press, 1993), and references therein.

  30. F. Cardone and R. Mignani, Int. J. Modern Phys. A 14, 3799 (1999).

    Google Scholar 

  31. T. Damour and J. Taylor, Astrophys. J. 366, 501 (1991), and references therein.

    Google Scholar 

  32. M. Ferraris, Proc. of Journe es Relativistes, S. Benvenuti, M. Ferraris, and M. Francaviglia, eds. (Pitagora, Bolagna, 1983), p. 125; M. Ferraris and J. Kijowksi, Gen. Rel. Grav. 14, 37 (1982).

    Google Scholar 

  33. M. Gaspero, Sov. J. Nucl. Phys. 55, 795 (1992); Nucl. Phys. A 562, 407 (1993); ibidem, 588, 861 (1995). M. Gaspero and A. De Pascale, Phys. Lett. B 358, 146 (1995).

    Google Scholar 

  34. CPLEAR collaboration, R. Adler et al., Nucl. Phys. A 558, 43c (1993); Z. Phys. C 63, 541 (1994).

    Google Scholar 

  35. F. Cardone, M. Gaspero, and R. Mignani, Eur. Phys. J. C 4, 705 (1998).

    Google Scholar 

  36. G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Nature 393, 763 (1998).

    Google Scholar 

  37. P. Kaaret, Astron. Astrophys. 345, L32 (1999).

    Google Scholar 

  38. P. A. M. Dirac, Nature 139, 323 (1937).

    Google Scholar 

  39. J. K. Webb, V. V. Flambaum, C. W. Churchill, M. J. Drinkwater, and J. Barrow, astroph/9803165 (1998). M. J. Drinkwater, J. K. Webb, J. Barrow, and V. V. Flambaum, Mon. Not. Roy. Astron. Soc. 295, 457 (1998).

    Google Scholar 

  40. See e.g., A. V. Ivanchik, A. Y. Potekhin, and D. A. Varshalovich, Astron. Astrophys. (1998), and references therein.

  41. See, e.g., M. B. Green and J. H. Schwarz, Superstring Theory (Cambridge University Press, 1987). P. Sisterna and H. Vucetich, Phys. Rev. D 41, 1034 (1990).

    Google Scholar 

  42. F. Cardone, M. F. Francaviglia, and R. Mignani, Gen. Rel. Grav. A 30, 1619 (1998); Found. Phys. Lett. 12, 281 (1999); Gen. Rel. Grav. 31, 1049 (1999); Energy as fifth dimension, Found. Phys. Lett. (in press).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardone, F., Mignani, R. Broken Lorentz Invariance and Metric Description of Interactions in a Deformed Minkowski Space. Foundations of Physics 29, 1735–1783 (1999). https://doi.org/10.1023/A:1018825930183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018825930183

Keywords

Navigation