Skip to main content
Log in

Maxwell’s equations and Lorentz force in doubly special relativity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

On the basis of all commutation relations of the \(\kappa \)-deformed phase space incorporating the \(\kappa \)-Minkowski space-time, we have derived in this paper an extended first approximation of both Maxwell’s equations and Lorentz force in doubly (or deformed) special relativity (DSR). For this purpose, we have used our approach of the special relativistic version of Feynman’s proof by which we have established the explicit formulations of electric and magnetic fields. As in Fock’s nonlinear relativity (FNLR), the laws of electrodynamics depend on the particle mass which therefore constitutes a common point between the two extended forms of special relativity. As one consequence, the corresponding equation of motion contains two different types of contributions. In addition to the usual type, another one emerges as a consequence of the coexistence of mass and charge which are coupled with the \(\kappa \)-deformation and electromagnetic field. This new effect completely induced by the \(\kappa \)-deformed phase space is interpreted as the gravitational-type Lorentz force. Unlike FNLR, the corrective terms all depend on the electromagnetic field in DSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Amelino Camelia Phys. Lett. B 510 255 (2001)

    ADS  Google Scholar 

  2. G Amelino Camelia Int. J. Mod. Phys. D 11 35 (2002)

    ADS  MathSciNet  Google Scholar 

  3. G Amelino Camelia Nature 418 34 (2002)

    ADS  Google Scholar 

  4. J Magueijo and L Smolin Phys. Rev. Lett. 88 190403 (2002)

    ADS  Google Scholar 

  5. J Magueijo and L Smolin Phys. Rev. D 67 044017 (2003)

    ADS  MathSciNet  Google Scholar 

  6. S Ghosh and P Pal Phys. Rev. D 75 105021 (2007)

    ADS  MathSciNet  Google Scholar 

  7. F J Dyson Am. J. Phys. 58 209 (1990)

    ADS  Google Scholar 

  8. S Tanimura Ann. Phys. 220 229 (1992)

    ADS  Google Scholar 

  9. N Dombey Am. J. Phys. 59 85 (1991)

    ADS  MathSciNet  Google Scholar 

  10. R W Brehme Am. J. Phys. 59 85 (1991)

    ADS  MathSciNet  Google Scholar 

  11. J L Anderson Am. J. Phys. 59 86 (1991)

    ADS  Google Scholar 

  12. I E Farquhar Am. J. Phys. 59 87 (1991)

    ADS  MathSciNet  Google Scholar 

  13. A Vaidya and C Farina Phys. Lett. A 153 265 (1991)

    ADS  MathSciNet  Google Scholar 

  14. S A Hojman and L C Shepley J. Math. Phys. 32 142 (1991)

    ADS  MathSciNet  Google Scholar 

  15. R J Hughes Am. J. Phys. 60 301 (1992)

    ADS  Google Scholar 

  16. A Bérard, Y Grandati and H Mohrbach J. Math. Phys. 40 3732 (1999)

    ADS  MathSciNet  Google Scholar 

  17. A Bérard, Y Grandati and H Mohrbach Phys. Lett. A 254 133 (1999)

    ADS  Google Scholar 

  18. A Bérard and H Mohrbach Int. J. Theor. Phys. 39 2623 (2000)

    Google Scholar 

  19. A Bérard, J Lages and H Mohrbach arXiv:gr-qc/0110005 (2001)

  20. M Montesinos and A Perez-Lorenzana Int. J. Theor. Phys. 38 901 (1999)

    Google Scholar 

  21. A Boulahoual and M B Sedra, J. Math. Phys. 44, 5888 (2003)

    ADS  MathSciNet  Google Scholar 

  22. J F Carinena and H Figueroa J. Phys. A 39 3763 (2006)

    ADS  MathSciNet  Google Scholar 

  23. A Bérard, H Mohrbach, J Lages, P Gosselin, Y Grandati, H Boumrar and F Ménas J. Phys. Conf. Ser. 70 012004 (2007)

    Google Scholar 

  24. I Cortese and J A Garcia Int. J. Geom. Methods Mod. Phys. 4 789 (2007)

    MathSciNet  Google Scholar 

  25. E Harikumar Europhys. Lett. 90 2100 (2010)

    Google Scholar 

  26. E Harikumar, T Jurić and S Meljanac Phys. Rev. D 84 085020 (2011)

    ADS  Google Scholar 

  27. E Harikumar, T Jurić and S Meljanac Phys. Rev. D 86 045002 (2012)

    ADS  Google Scholar 

  28. N Takka, A Bouda and T Foughali Can. J. Phys. 95 987 (2017)

    ADS  Google Scholar 

  29. N Takka and A Bouda Mod. Phys. Lett. A 33 1850173 (2018)

    ADS  Google Scholar 

  30. N Takka Int. J. Mod. Phys. A 34 1950016 (2019)

    ADS  Google Scholar 

  31. V Fock The Theory of Space, Time and Gravitation (London: Pergamon Press) (1964)

    MATH  Google Scholar 

  32. S N Manida arXiv:gr-qc/9905046 (1999)

  33. S S Stepanov Phys. Rev. D 62 023507 (2000)

    ADS  Google Scholar 

  34. D Kimberly, J Magueijo and J Medeiros Phys. Rev. D 70 084007 (2004)

    ADS  MathSciNet  Google Scholar 

  35. S K Kim, S M Kim, C Rim and J H Yee J. Korean Phys. Soc 45 1435 (2004)

    Google Scholar 

  36. A Bouda and T Foughali Mod. Phys. Lett. A 27 1250036 (2012)

    ADS  Google Scholar 

  37. J Lukierski, A Nowicki and H Ruegg Phys. Lett. B293 344 (1992)

    ADS  MathSciNet  Google Scholar 

  38. J Lukierski and H Ruegg Phys. Lett. B 329 189 (1994)

    ADS  MathSciNet  Google Scholar 

  39. S Majid and H Ruegg Phys. Lett. B 334 348 (1994)

    ADS  MathSciNet  Google Scholar 

  40. J Lukierski and A Nowicki arXiv:q-alg/9702003v1 (1997)

  41. J Lukierski arXiv:hep-th/9812063v2 (1998)

  42. T Jurić, S Meljanac and D Pikutic Eur. Phys. J. C 75 528 (2015)

    ADS  Google Scholar 

  43. D Kovačević, S Meljanac, A Samsarov and Z Škoda Int. J. Mod. Phys. A 30 1550019 (2015)

    ADS  Google Scholar 

  44. T Jurić, T Poulain and J C Wallet JHEP 07 116 (2017)

    ADS  Google Scholar 

  45. A Borowiec, K S Gupta, S Meljanac and A Pachol Europhys. Lett. 92 20006 (2010)

    ADS  Google Scholar 

  46. T Jurić, S Meljanac, D Pikutic and R Štrajn JHEP 1507 055 (2015)

    ADS  Google Scholar 

  47. D Meljanac, S Meljanac, S Mignemi and R Štrajn arXiv:1903.08679 (2019)

  48. E Harikumar and A K Kapoor Mod. Phys. Lett. A 25 2991 (2010)

    ADS  Google Scholar 

  49. T R Govindarajan, K S Gupta, E Harikumar, S Meljanac and D Meljanac Phys. Rev. D 80 025014 (2009)

    ADS  Google Scholar 

  50. D Kovačević and S Meljanac J. Phys. A Math. Theor. 45 135208 (2012)

    ADS  Google Scholar 

  51. T Jurić, D Kovačević and S Meljanac SIGMA 10 106 (2014)

    ADS  Google Scholar 

  52. T Jurić, S Meljanac and R Štrajn Int. J. Mod. Phys. A 29 1450022 (2014)

    ADS  Google Scholar 

  53. T Jurić, S Meljanac and R Štrajn Int. J. Mod. Phys. A 29 1450121 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Takka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To find the explicit first-order form of the electromagnetic tensor in DSR, we first use Eqs. (26) and (33) to get

$$\begin{aligned} \left[ x^{\mu }, F^{\nu \lambda } \right] _{(1)}& = \left[ x^{\mu } + \delta x^{\mu }, F^{\nu \lambda } (x) + \delta F^{\nu \lambda }(x,{\dot{x}})\right] _{(1)}\nonumber \\& = \left[ x^{\mu }, {\dot{x}}^{\beta }\right] _{(0)}\frac{\partial \delta F^{\nu \lambda }}{\partial {\dot{x}}^{\beta }} + \frac{m}{\kappa }\left[ {\dot{x}}^{0}, x^{\alpha }\right] _{(0)}\frac{\partial F^{\nu \lambda }}{\partial x^{\alpha }} x^{\mu } \nonumber \\& = -i\hbar \left( \frac{1}{m}\frac{\partial \delta F^{\nu \lambda }}{\partial {\dot{x}}_{\mu }} - \frac{1}{\kappa }\partial ^{0} F^{\nu \lambda } x^{\mu }\right) . \end{aligned}$$
(63)

Furthermore, making use of Jacobi identity involving one coordinate and two velocities, we can make sure that Eq. (29) gives

$$\begin{aligned} \left[ x^{\mu }, F^{\nu \lambda } \right] _{(1)} = \frac{m^{2}}{i\hbar q}\left( \left[ {\dot{x}}^{\lambda }, \left[ x^{\mu }, {\dot{x}}^{\nu } \right] \right] _{(1)}- \left[ {\dot{x}}^{\nu }, \left[ x^{\mu }, {\dot{x}}^{\lambda } \right] \right] _{(1)}\right) . \end{aligned}$$
(64)

Taking into account Eq. (55) and the zeroth-order form of (29), we find

$$\begin{aligned}&\left[ {\dot{x}}^{\lambda }, \left[ x^{\mu }, {\dot{x}}^{\nu } \right] \right] _{(1)} = \frac{\hbar ^{2}q}{m^{2}\kappa }\Big \{-\eta ^{\mu 0} F^{\lambda \nu }\nonumber \\&\quad +\,\left( 2\eta ^{\mu \nu } \partial ^{0}A^{\lambda } + \eta ^{\lambda \nu } \partial ^{0}A^{\mu } + \eta ^{\lambda \mu } \partial ^{0}A^{\nu }\right) \nonumber \\&\quad +\,\left( \partial ^{\lambda }\partial ^{0} A^{\mu }x^{\nu } + \partial ^{\lambda }\partial ^{0} A^{\nu }x^{\mu }\right) \Big \}, \end{aligned}$$
(65)

which, after interchanging \(\lambda \) with \(\nu \), gives

$$\begin{aligned}&\left[ {\dot{x}}^{\nu }, \left[ x^{\mu }, {\dot{x}}^{\lambda } \right] \right] _{(1)} = \frac{\hbar ^{2}q}{m^{2}\kappa }\Big \{-\eta ^{\mu 0} F^{\nu \lambda } \nonumber \\&\quad +\,\left( 2\eta ^{\mu \lambda } \partial ^{0}A^{\nu } + \eta ^{\nu \lambda } \partial ^{0}A^{\mu } + \eta ^{\nu \mu } \partial ^{0}A^{\lambda }\right) \nonumber \\&\quad +\,\left( \partial ^{\nu }\partial ^{0} A^{\mu }x^{\lambda } + \partial ^{\nu }\partial ^{0} A^{\lambda }x^{\mu }\right) \Big \}. \end{aligned}$$
(66)

Substituting Eqs. (65) and (66) into (64), we obtain

$$\begin{aligned}&\left[ x^{\mu }, F^{\nu \lambda } \right] _{(1)} = - \frac{i\hbar }{\kappa }\Big \{2\eta ^{\mu 0} F^{\nu \lambda } -\partial ^{0}F^{\nu \lambda }x^{\mu } \nonumber \\&\quad +\,\left( \eta ^{\mu \nu } \partial ^{0}A^{\lambda } -\eta ^{\mu \lambda } \partial ^{0}A^{\nu }\right) \nonumber \\&\quad +\,\left( \partial ^{\lambda }\partial ^{0} A^{\mu }x^{\nu } - \partial ^{\nu }\partial ^{0} A^{\mu }x^{\lambda }\right) \Big \}. \end{aligned}$$
(67)

Finally, after identification of (67) with (63) and integration of the resulting equation, the generalized electromagnetic tensor takes the following form

$$\begin{aligned}&F^{\nu \lambda }_{(1)}(x, {\dot{x}}) = F^{\nu \lambda }(x) + \frac{m}{\kappa }\left\langle \Big \{ 2\eta ^{\mu 0}F^{\nu \lambda } + \left( \eta ^{\mu \nu }\partial ^{0}A^{\lambda } - \eta ^{\mu \lambda }\partial ^{0}A^{\nu }\right) \right. \nonumber \\&\quad +\,\left. \left( \partial ^{\lambda }\partial ^{0}A^{\mu }x^{\nu } - \partial ^{\nu }\partial ^{0}A^{\mu }x^{\lambda }\right) \Big \}{\dot{x}}_{\mu } \right\rangle . \end{aligned}$$
(68)

From above, it is obvious that \(F^{\nu \lambda }_{(1)}(x, {\dot{x}})\) is antisymmetric with respect to the permutation of indices \(\nu \) and \(\lambda \). Apart from the doubled corrective term, we remark also that the other terms vanish in the static case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takka, N., Bouda, A. Maxwell’s equations and Lorentz force in doubly special relativity. Indian J Phys 94, 1227–1235 (2020). https://doi.org/10.1007/s12648-019-01556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01556-x

Keywords

PAC Nos.

Navigation