Skip to main content
Log in

Locally Adaptive Wavelet Empirical Bayes Estimation of a Location Parameter

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The traditional empirical Bayes (EB) model is considered with the parameter being a location parameter, in the situation when the Bayes estimator has a finite degree of smoothness and, possibly, jump discontinuities at several points. A nonlinear wavelet EB estimator based on wavelets with bounded supports is constructed, and it is shown that a finite number of jump discontinuities in the Bayes estimator do not affect the rate of convergence of the prior risk of the EB estimator to zero. It is also demonstrated that the estimator adjusts to the degree of smoothness of the Bayes estimator, locally, so that outside the neighborhoods of the points of discontinuities, the posterior risk has a high rate of convergence to zero. Hence, the technique suggested in the paper provides estimators which are significantly superior in several respects to those constructed earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich, F. and Silverman, B. W. (1998). Wavelet decomposition approaches to statistical inverse problems, Biometrika, 85, 115–129.

    Google Scholar 

  • Antoniadies, A., Grégoire, G. and McKeague, I.W. (1994). Wavelet method for curve estimation, J. Amer. Statist. Assoc., 89, 1340–1353.

    Google Scholar 

  • Bickel, P. J. and Klaassen, C. A. J. (1986). Empirical Bayes estimation in functional and structural models and uniformly adaptive estimation of location, Advances in Applied Mathematics, 7, 55–69.

    Google Scholar 

  • Brown, L. D. and Low M. G. (1996). A constrained risk inequality with applications to nonparametric functional estimation, Ann. Statist., 24, 2524–2535.

    Google Scholar 

  • Carlin, B. P. and Louis, T. A. (1996). Bayes and Empirical Bayes Methods for Data Analysis, Chapman & Hall, London.

    Google Scholar 

  • Daubechies, I. (1992). Ten Lectures in Wavelets, SIAM, Philadelphia.

    Google Scholar 

  • Donoho, D. L. (1994). Smooth wavelet decompositions with blocky coefficient kernels, Recent Advances in Wavelet Analysis (eds. L. L. Schumaker and G. Webb), 259–308, Academic Press, London.

    Google Scholar 

  • Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage, J. Amer. Statist. Assoc., 90, 1200–1224.

    Google Scholar 

  • Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by wavelet thresholding, Ann. Statist., 24, 508–539.

    Google Scholar 

  • Efromovich, S. (1997). Density estimation for the case of supersmooth measurement error, J. Amer. Statist. Assoc., 92, 526–535.

    Google Scholar 

  • Hall, P. and Patil, P. (1995). Formulae for mean integrated squared error of nonlinear wavelet-based density estimators, Ann. Statist., 23, 905–928.

    Google Scholar 

  • Hall, P., Kerkyacharian, G. and Picard, D. (1998). Block thresholding rules for curve estimation using kernel and wavelet methods, Ann. Statist., 26, 922–942.

    Google Scholar 

  • Hernández, E. and Weiss, G. (1996). A First Course on Wavelets, CRC Press, Boca Raton.

    Google Scholar 

  • Huang, Su-Yun (1997). Wavelet based empirical Bayes estimation for the uniform distribution, Statist. Probab. Lett., 32, 141–146.

    Google Scholar 

  • Kerkyacharian, G. and Picard, D. (1992). Density estimation in Besov spaces, Statist. Probab. Lett., 13, 15–24.

    Google Scholar 

  • Maritz, J., and Lwin, T. (1989). Empirical Bayes Methods, Chapman & Hall, London.

    Google Scholar 

  • Masry, E. (1994). Probability density estimation from dependent observations using wavelet orthonormal bases, Statist. Probab. Lett., 21, 181–194.

    Google Scholar 

  • Meyer, I. (1993). Wavelets Algorithms and Applications, SIAM, Philadelphia.

    Google Scholar 

  • Nogami, Y. (1988). Convergence rates for empirical Bayes estimation in the uniform U(0, θ) distribution, Ann. Statist., 16, 1335–1341.

    Google Scholar 

  • Penskaya, M. (1992). On empirical Bayes estimation of a shift parameter, Probab. Theory Appl., 37, 732–734.

    Google Scholar 

  • Pensky, M. (1996). Empirical Bayes estimation of a scale parameter, Math. Methods Statist., 5, 316–331.

    Google Scholar 

  • Pensky, M. (1997a). Empirical Bayes estimation of a location parameter, Statist. Decisions, 15, 1–16.

    Google Scholar 

  • Pensky, M. (1997b). A general approach to nonparametric empirical Bayes estimation, Statistics, 29, 61–80.

    Google Scholar 

  • Pensky, M. (1997c). Wavelet empirical Bayes estimation of a location or a scale parameter, J. Statist. Plann. Inference (submitted).

  • Pensky, M. (1998). Empirical Bayes estimation based on wavelets, Sankhyā Ser. A, 60, 214–231.

    Google Scholar 

  • Pensky, M. (1999). Nonparametric empirical Bayes estimation via wavelets, Bayesian Inference in Wavelet Based Models, Lecture Notes in Statist., Vol. 141 (eds. P. Müller and B. Vidakovic), 323–340, Springer, New York.

    Google Scholar 

  • Robbins, H. (1983). Jerzy Neyman memorial lecture. Some thoughts on empirical Bayes estimation, Ann. Statist., 11, 713–723.

    Google Scholar 

  • Singh, R. S. (1979). Empirical Bayes estimation in Lebesgue-exponential families with rates near the best possible rate, Ann. Statist., 7, 890–902.

    Google Scholar 

  • Singh, R. S. and Prasad, B. (1989). Uniformly strongly consistent prior distribution and empirical Bayes estimators with asymptotic optimality and rates in a non-exponential family, Sankhyā Ser. A, 51, 334–342.

    Google Scholar 

  • Singh, R. S. and Wei, L. (1992). Empirical Bayes with rates and best rates of convergence in u(x)c(θ) exp(− x/θ) family estimation case, Ann. Inst. Statist. Math., 44, 435–449.

    Google Scholar 

  • Tiwari, R. C. and Zalkikar, J. N. (1990). Empirical Bayes estimation of a scale parameter in a Pareto distribution, Comput. Statist. Data Anal., 10, 261–270.

    Google Scholar 

  • Vidakovic, B. (1999). Statistical Modeling by Wavelets, Wiley, New York.

    Google Scholar 

  • Walter, G. G. (1981). Orthogonal series estimators of the prior distribution, Sankhyā Ser. A, 43, 228–245.

    Google Scholar 

  • Walter, G. G. (1994). Wavelets and Other Orthogonal Systems with Applications, CRC Press, Boca Raton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Pensky, M. Locally Adaptive Wavelet Empirical Bayes Estimation of a Location Parameter. Annals of the Institute of Statistical Mathematics 54, 83–99 (2002). https://doi.org/10.1023/A:1016165721644

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016165721644

Navigation