Skip to main content
Log in

Wavelet Optimal Estimations for a Multivariate Probability Density Function Under Weighted Distribution

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is the pointwise estimation of a multivariate probability density function with weighted distribution using wavelet methods. New theoretical contributions are provided; Point-wise convergence rates of wavelet estimators are established in the local Hölder space. First, a lower bound is provided for all the possible estimators. Specially, a linear wavelet estimator is defined and turned out to be the optimal one in the considered setting. Subsequently, regarding the adaptive estimation problem, a nonlinear estimator is proposed as usual and discussed. Finally, a new data driven wavelet estimator is introduced and shown to be completely adaptive and almost optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Butucea, C.: The adaptive rate of convergence in a problem of pointwise density estimation. Stat. Probab. Lett. 47, 85–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butucea, C.: Exact adaptive pointwise estimation on Sobolev classes of densities. ESAIM Probab. Stat. 5, 1–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chesneau, C.: Wavelet block thresholding for density estimation in the presence of bias. J. Korean Stat. Soc. 39, 43–53 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chesneau, C., Dewan, I., Doosti, H.: Wavelet linear density estimation for associated stratified size-biased sample. J. Nonparametr. Stat. 24(2), 429–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cui, L., Zhang, Q., Sun, J.: Multiwavelet density estimation for biased data. Commun. Stat. Simul. C. 2019, 1–20 (2019)

    MATH  Google Scholar 

  6. Devore, R., Kerkyacharian, G., Picard, D., Temlyakov, V.: Approximation methods for supervised learning. Found. Comput. Math. 6, 3–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Efromovich, S.: Nonparametric Curve Estimation. Methods, Theory, and Applications. Springer, Berlin (1999)

    MATH  Google Scholar 

  8. Fisher, R.A.: The effects of methods of ascertainment upon the estimation of frequencies. Ann. Eugen. 6, 13–25 (1934)

    Article  Google Scholar 

  9. Goldenshluger, A., Lepski, O.: Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality. Ann. Stat. 39, 1608–1632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, H.J., Kou, J.K.: Pointwise density estimation for biased sample. J. Comput. Appl. Math. 361, 444–458 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets, Approximations, and Statistical Applications. Springer, New York (1998)

    Book  MATH  Google Scholar 

  12. Jones, M.C.: Kernel density estimation for length biased data. Biometrika 78, 511–519 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Y.M., Wu, C.: Point-wise estimation for anisotropic densities. J. Multivariate Anal. 171, 112–125 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Y.M., Xu, J.L.: Wavelet density estimation for negatively associated stratified size-biased sample. J. Nonparametr. Stat. 26(3), 537–554 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Y.M., Xu, J.L.: On the \(L^p\)-consistency of wavelet estimators. Acta Math. Sin. 32(7), 765–782 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meyer, Y.: Wavelets and Operators. Cambridge University, Oxford (1992)

    MATH  Google Scholar 

  17. Patil, G.P., Rao, C.R.: The Weighted Distributions: A Survey of Their Applications. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  18. Pensky, M.: Density deconvolution based on wavelets with bounded supports. Stat. Probab. Lett. 56, 261–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ramirez, P., Vidakovic, B.: Wavelet density estimation for stratified size-biased sample. J. Stat. Plan. Inference 140, 419–432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rao, C.R.: On discrete distributions arising out of methods of ascertainment. In: Patil, G.P. (ed.) Classical and Contagious Discrete Distributions. Pergamon Press and Statistical Publishing Society, Calcutta (1965)

    Google Scholar 

  21. Rebelles, G.: Pointwise adaptive estimation of a multivariate density under independence hypothesis. Bernoulli 21, 1984–2023 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shirazi, E., Doosti, H.: Multivariate wavelet-based density estimation with size-biased data. Stat. Methodol. 27, 12–19 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Walter, G.G.: Density estimation in the presence of noise. Stat. Probab. Lett. 41, 237–246 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, J.R., Wang, M., Zhou, Y.: Nonlinear wavelet density estimation for biased data in Sobolev spaces. J. Inequal. Appl. 2013(1), 1–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for valuable comments that helped to improve the quality of the article.

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 12101014, 12001133 and 12001132) and the Natural Science Basic Research plan in Shaanxi Province of China (No.2020JQ-892).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlian Xu.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we present the Bernstein inequality used in this study.

Bernstein’s inequality [11]. Let \(X_{1},\ldots ,X_n\) be a sequence of independent random variables such that \(\textbf{E}(X_{i})=0,\;\textbf{E}(X^2_{i})=\sigma ^2\) and \(|X_i|\le M'<\infty \) (\(i=1,\ldots ,n\)). Then for each \(\vartheta >0,\) we have

$$\begin{aligned} \mathbb {P}\left( \left| \frac{1}{n}\sum \limits _{i=1}^{n}X_i\right| >\vartheta \right) \le 2\exp \left( -\frac{n\vartheta ^2}{2\left( \sigma ^2+\frac{\vartheta M'}{3}\right) }\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chesneau, C., Kou, J. et al. Wavelet Optimal Estimations for a Multivariate Probability Density Function Under Weighted Distribution. Results Math 78, 66 (2023). https://doi.org/10.1007/s00025-023-01846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-01846-1

Keywords

Mathematics Subject Classification

Navigation