Skip to main content
Log in

On Quantum Phase Transition. I. Spinless Electrons Strongly Correlated with Ions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a large class F of models of the quantum statistical mechanics dealing with two types of particles. First the spinless electrons are quantum particles obeying to the Fermi statistics, they can hop. Secondly the ions which cannot move, are classical particles. The Falicov–Kimball (FK) model(1) is a well known model belonging to F, for which the existence of an antiferomagnetic phase transition was proven in the seminal paper of Kennedy and Lieb.(2) This result was extended by Lebowitz and Macris.(3) A new approach to this problem based on quantum selection of the ground states was proposed in ref. 4. In this paper we extend this approach to show that, under the “strong insulating condition,” any hamiltonian of the class F admits, at every temperature, an effective hamiltonian, which governs the behaviour of the ions interacting through forces mediated by the electrons. The effective hamiltonians are long range many body Ising hamiltonians, which can be computed by a cluster expansion expressed in term of the quantum fluctuations. Our main result is that we can apply the powerfull results of the classical statistical mechanics to our quantum models. In particular we can use the classical Pirogov–Sinai theory to establish a hierarchy of phase diagrams, we can also study of the behaviour of the quantum inter- faces,(29) and so on...

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Falicov and J. Kimball, Phys. Rev. Lett. 22:997 (1969).

    Google Scholar 

  2. T. Kennedy and E. Lieb, Physica A 138:320-358 (1986).

    Google Scholar 

  3. J. Lebowitz and N. Macris, Rev. Math. Phys. 6:927-946 (1994).

    Google Scholar 

  4. A. Messager, Miracle Sole S. Rev. Math. Phys. 8:271-299 (1996).

    Google Scholar 

  5. A. Messager, On Quantum Phase II, J. Statist. Phys. 106:785-810 (2002)

    Google Scholar 

  6. N. Fisher and W. Selke, Phil. Trans. Royal. Soc. 302:1 (1981).

    Google Scholar 

  7. E. Dinaburg, A. Mazel, and Ya. Sinai, Sov. Sci. Rev. 6:119 (1986).

    Google Scholar 

  8. E. Dinaburg and Ya. Sinai, Comm. Math. Phys. 98:119 (1985).

    Google Scholar 

  9. J. Bricmont and J. Slawny, J. Statist. Phys. 54:89-161 (1989).

    Google Scholar 

  10. J. Ginibre, in Statistical Mechanics and Quantum Field Theory, De Witt and Stora, eds. (Gordon and Breach, New York, 1971).

    Google Scholar 

  11. A. Messager, S. Pirogov, and Y. Suhov, Preprint CPT (1995).

  12. N. Aizenman, Nachtergale Comm. Math. Phys. 164:17 (1994).

    Google Scholar 

  13. D. Ruelle, Statistical Mechanics (Benjamin, New York, 1969).

    Google Scholar 

  14. Ja. Sinai, Theory of Phase Transitions: Rigorous Results (Pergamon Press Gordon, 1982).

    Google Scholar 

  15. S. Pirogov and Ja. Sinai, Phase diagrams of classical lattice systems, Theor. Math. Phys. 25:1185-1192 (1975) and 26:39-49 (1976).

    Google Scholar 

  16. E. Dinaburg, A. Mazel, and Ya. Sinai, Sov. Sci. Rev. 6:119 (1986). Y. M. Park, Commun. Math. Phys. 114:187-218 and 114:219-241 (1988).

    Google Scholar 

  17. C. Borgs, R. Kotecki, and D. Ueltschi, Comm. Math. Phys. 181:409-446 (1996).

    Google Scholar 

  18. J. Bricmont, K. Kuroda, and J. Lebowitz, Commun. Math. Phys. 101:501-538 (1985).

    Google Scholar 

  19. G. Gallavotti, Miracle Sole S. Phys. Rev. 5:2287 (1972).

    Google Scholar 

  20. D. Martirossian, Usp. Mat. Nauk. 30:181 (1975).

    Google Scholar 

  21. R. L. Dobrushin, Amer. Math. Soc. Transl. 177:59-81 (1996).

    Google Scholar 

  22. R. Kotecki and D. Preiss, Comm. Math. Phys. 103:491-508 (1986).

    Google Scholar 

  23. C. Pfister, Helv. Phys. Acta 64:928 (1991).

    Google Scholar 

  24. V. A. Malyshev and R. Minlos, Gibbs Random Fields (Kluwer Academic Publishers), Vol. 44.

  25. E. Lieb, Phys. Rev. Lett. 73:2158 (1994).

    Google Scholar 

  26. E. Lieb and B. Nachtergaele, Phys. Rev. B 51:8 (1995).

    Google Scholar 

  27. J. Lebowitz and N. Macris, J. Statist. Phys. 76:927 (1994).

    Google Scholar 

  28. J. Freericks and E. Lieb, Phys. Rev. B (1994).

  29. N. Datta, A. Messager, and B. Nachtergaele, J. Statist. Phys. 99:57-108 (2000).

    Google Scholar 

  30. N. Datta, Fernandez, J. Frohlich, and L. Rey-Bellet, Helv. Phys. Acta 69:752-820 (1996). N. Datta, Fernandez, and J. Frohlich, J. Statist. Phys. 84:455-534 (1996).

    Google Scholar 

  31. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1 and 2 (Springer-Verlag, New York, 1979 and 1981).

    Google Scholar 

  32. I. Gikhman and A. Skorohod, The Theory of Stochastic Processes I and II (Springer-Verlag, 1975).

  33. J. Bondy and U. Murphy, Graph Theory with Applications, (The Macmillan Press LTD, London).

  34. A. Messager, Physica A 279:408-415 (2000).

    Google Scholar 

  35. T. J. Kennedy, J. Statist. Phys. 91:829 (1998).

    Google Scholar 

  36. C. Gruber, J. Jedrzejewski, and P. Lemberger, J. Statist. Phys. 76:913-938 (1992).

    Google Scholar 

  37. T. Kennedy, Comm. Math. Phys. 100:447-462 (1985).

    Google Scholar 

  38. A. Messager and B. Nachtergaele, Localisation and Rigidity of the 111 Interface in the 3d. Anisotropic Heisenberg Model (in preparation).

  39. J. Freericks, E. Lieb, and D. Ueltschi, Segregation in the Falicov-Kimball Model, arXiv: math-phys107003.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messager, A. On Quantum Phase Transition. I. Spinless Electrons Strongly Correlated with Ions. Journal of Statistical Physics 106, 723–783 (2002). https://doi.org/10.1023/A:1013722725481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013722725481

Navigation