Skip to main content
Log in

Spectrochemical Properties of Noncubical Transition Metal Complexes in Solution. XII. Angular Overlap Studies of Salicylideneethylenediamine Cu(II) Complex in Various Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

As a part of our general interest in the UV-Vis spectroscopy of multidentate mixed-donor ligands, the (salicylideneethylenediamine)Cu(II) complex has been prepared and characterized by elemental analyses, solubility in common solvents, molar conductivities, and ultraviolet (UV), and visible (Vis) spectroscopy. The combined results of spectrophotometric measurements and EPR spectra, as well as known the X-ray structure for solids, were used to determine the structure of the investigated complex in solutions. The spectra of [Cu(salen)] (H2salen = salicylideneethylenediamine), were measured in various solvents at room temperature, resolved by Gaussian analysis, and angular overlap model (AOM) treated in C 2v symmetry. Because of overparametrization problems, the bis(salicylaldehyde)Cu(II) complex has been characterized and AOM treated. The results of this have been used for AOM studies of [Cu(salen)]. The effect of the solvents upon the σ- and π-bonding ligand abilities is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd edn. (Pergamon Press, Oxford, England, 1988).

    Google Scholar 

  2. L. R. Belford and W. A. Yeranos, Mol. Phys. 6, 121 (1963).

    Google Scholar 

  3. R. H. Bailes and M. Calvin, J. Amer. Chem. Soc. 69, 1886 (1947).

    Google Scholar 

  4. K. Kurzak and B. Kurzak, Spectrochim. Acta A46, 1561 (1990).

    Google Scholar 

  5. K. Kurzak, B. Kurzak, E. Matczak-Jon, and M. Hoffmann, Spectrosc. Lett. 29, 1307 (1996).

    Google Scholar 

  6. K. Kurzak, Ph.D. Thesis University ofTechnology, WrocÃlaw, 1983; (b) A. Bartecki, J. SoÃltowski, and K. Kurzak, Comp. Enhanced Spectrosc. 1, 31 (1983).

    Google Scholar 

  7. I. A. Slavič, Nucl. Instr. Methods, 34, 285 (1976).

    Google Scholar 

  8. K. Kurzak and A. Bartecki, Transition Met. Chem. 13, 224 (1988); (b) K. Kurzak, Wiad. Chem. 45, 425 (1991) (in Polish); (c) K. Kurzak and A. KoÃlkowicz, Spectrosc. Lett. 30, 805 (1997).

    Google Scholar 

  9. K. Kurzak, Spectrochim. Acta 47A, 1041 (1991).

    Google Scholar 

  10. S. K. Tyrlik, K. Kurzak, and S. L. Randzio, Transition Met. Chem. 20, 330 (1995); (b) B. Kurzak, A. Kamecka, K. Kurzak, J. Jezierska, and P. Kafarski, Polyhedron 17, 4403 (1998); (c) Polyhedron 19, 2083 (2000).

    Google Scholar 

  11. L. M. Schwartz, Anal. Chem. 43, 1336 (1971).

    Google Scholar 

  12. K. Kurzak, Comp. Chem. 24, 519 (1999).

    Google Scholar 

  13. C. E. Schäffer, Struct. Bonding 5, 68 (1968).

    Google Scholar 

  14. C. E. Schäffer, Struct. Bonding 14, 69 (1973).

    Google Scholar 

  15. C. K. Jørgensen, Modern Aspects of Ligand Field Theory (North-Holland, Amsterdam, 1970).

    Google Scholar 

  16. C. E. Schäffer and C. K. Jørgensen, Mol. Phys. 9, 401 (1965).

    Google Scholar 

  17. A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd edn. (Elsevier, Amsterdam 1984).

    Google Scholar 

  18. G. St. Nikolov, J. Inorg. Nucl. Chem. 39, 249 (1977).

    Google Scholar 

  19. K. Kurzak and A. KoÃlkowicz, Pol. J. Chem. 68, 1501 (1994).

    Google Scholar 

  20. P. Gili, M. S. Palacios, M. G. Martin-Reyes, and P. Martin-Zarza, Polyhedron 11, 2171 (1992).

    Google Scholar 

  21. N. Guskos, T. Dziembowska, G. Palios, S. M. Paraswekas, V. Likodimos, E. Grech, J. Typek, M. Wabia, and E. Jagodzińska, Pol. J. Chem. 69, 1630 (1995).

    Google Scholar 

  22. A.J. McKinnon, T. N. Waters, and D. Hall, J. Chem. Soc., p. 3290 (1964).

  23. D. Hall, A. J. McKinnon, and T. N. Waters, J. Chem. Soc., p. 425 (1965).

  24. A. Elmali, Y. Elerman, I. Svoboda, and H. Fuess, Z. Kristallogr. 210, 612 (1995).

    Google Scholar 

  25. Cambridge Structural Database. Version 5.17. (Cambridge Crystallographic Data Center, Cambridge, England, 1999).

  26. T. N. Waters and D. Hall, J. Chem. Soc., p. 1200 (1959).

  27. T. N. Waters and D. Hall, J. Chem. Soc., p. 1203 (1959).

  28. J. M. Waters and T. N. Waters, J. Chem. Soc., p. 2489 (1964).

  29. T. N. Waters and P. E. Wright, J. Inorg. Nucl. Chem. 33, 359 (1971).

    Google Scholar 

  30. A. C. Braithwaite, P. E. Wright, and T. N. Waters, J. Inorg. Nucl. Chem. 37, 1669 (1975).

    Google Scholar 

  31. G. Basu and S. Basu, Z. Phys. Chem. 215A, 308 (1960).

    Google Scholar 

  32. S. H. Crawford, Spectrochim. Acta 19, 255 (1963).

    Google Scholar 

  33. T. Tanaka, J. Amer. Chem. Soc. 80, 4108 (1958).

    Google Scholar 

  34. S. Koner, Chem. Commun., p. 593 (1998).

  35. S. A. Houlden and I. G. Csizmadia, Tetrahedron 25, 1137 (1969).

    Google Scholar 

  36. K. Kurzak and I. Kuźniarska-Biernacka, J. Solution Chem. 28, 133 (1999).

    Google Scholar 

  37. A. C. Braithwaite and T. N. Waters, J. Inorg. Nucl. Chem. 35, 3223 (1973).

    Google Scholar 

  38. D. Hall and T. N. Waters, J. Chem. Soc., p. 2644 (1960).

  39. N. E. Baker, D. Hall, and T. N. Waters. J. Chem. Soc. (A), p. 400 (1970).

  40. N. E. Baker, D. Hall, and T. N. Waters, J. Chem. Soc. (A), p. 406 (1970).

  41. H. S. Maslen and T. N. Waters, Coord. Chem. Rev. 17, 137 (1975).

    Google Scholar 

  42. M. Chikira, H. Yokoi, and T. Isobe, Bull. Chem. Soc. Jpn. 47, 2028 (1974).

    Google Scholar 

  43. M. M. Bhadbhade and D. Srinivas, Inorg. Chem. 32, 6122 (1993).

    Google Scholar 

  44. K. Kurzak and I. Kuźmarska-Biernacka, Spectrosc. Lett. 30, 1609 (1997).

    Google Scholar 

  45. K. Kurzak and I. Kuźniarska-Biernacka, J. Solution Chem. 27, 533 (1998).

    Google Scholar 

  46. I. Kuźniarska-Biernacka, Ph.D. Thesis, University of Technology, WrocÃlaw, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurzak, K., Kuźniarska-Biernacka, I., Kurzak, B. et al. Spectrochemical Properties of Noncubical Transition Metal Complexes in Solution. XII. Angular Overlap Studies of Salicylideneethylenediamine Cu(II) Complex in Various Solvents. Journal of Solution Chemistry 30, 709–731 (2001). https://doi.org/10.1023/A:1011957312088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011957312088

Navigation