Skip to main content
Log in

Spatial pattern analysis in Namaqualand desert plant communities: evidence for general positive interactions

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

This paper investigates of the spatial arrangement of individual plants in mapped plots in two desert communities in the winter rainfall region of South Africa. In both communities there was a very strong tendency towards clumped patterns when all plants were considered together. There was also a predominance of clumped patterns when the most abundant species in both communities were considered individually. When the arrangement of the most abundant species was considered relative to the arrangement of all other individuals at the within-clump scale, there was a high frequency of positive associations in both communities (62% and 65%). We speculate that these patterns represent a combination of seed dispersal strategies that favour clumped patterns and a predominance of positive interactions between plants in both of the communities. When specific pairwise associations between the most abundant species were considered at the within-clump scale, differences were apparent between the two communities. In the short strandveld community neutral associations predominated, while in the medium strandveld, neutral and positive association accounted for equal proportions of the associations. This between-plot difference was also apparent when the volumes of plants were related to an index of neighbourhood competitiveness. In the short strandveld there were no significant relationships while in the medium strandveld there were some weak (but significant) relationships. These differences were not altogether unexpected. If we assume that plants in the medium strandveld are generally longer-lived, then interactions between plants are likely to develop over a longer time and, therefore, are likely to be stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, T. H. & DeWet, B. C. 1993. Plants of southern Africa: names and distribution. Mem. Bot. Surv. S. A. 62: 1-825.

    Google Scholar 

  • Bertness, M. D. & Leonard, G. H. 1997. The role of positive interactions in communities: lessons from intertidal habitiats. Ecology 78(7): 1976-1989.

    Google Scholar 

  • Bittrich, V. & Hartmann, H. 1988. The Aizoaceae-a new approach. Bot. J. Lin. Soc. 97: 239-254.

    Google Scholar 

  • Boucher, D. H., James, S. & Keeler, K. H. 1982. The ecology of mutualisms. Ann. Rev. Ecol. Syst. 13: 315-347.

    Google Scholar 

  • Cale, W. G., Henebry, G. M. &Yeakley, J. A. 1989. Inferring process from pattern in natural communities. Can we understand what we see? Bioscience 39(9): 600-605.

    Google Scholar 

  • Callaway, R. M. 1995. Positive interactions among plants. Bot. Rev. 61(4): 306-348

    Google Scholar 

  • Callaway, R. M. & Walker, L. R. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7): 1958-1965.

    Google Scholar 

  • Couteron, P. & Kokou, K. 1997. Woody vegetation spatial patterns in a semi-arid savanna of Burkina Faso, West Africa. Pl. Ecol. 132: 211-227.

    Google Scholar 

  • Cowling, R. M., Esler, K. J., Midgley, G. F. & Honig, M. A. 1994. Plant functional diversity, species diversity and climate in arid and semi-arid southern Africa. J. Arid Environs 27: 141-158.

    Google Scholar 

  • Cowling, R. M., Rundel, P. W., Desmet, P. G. & Esler, K. J. 1998. Extraordinarily high regional-scale plant diversity in southern African arid lands: subcontinental and global comparisons. Biodiv. Let. (in press).

  • Desmet, P. G. & Cowling, R. M. 1998. Climate of the karoo: A functional approach. In: Dean, R. & Milton, S. J. (Eds), The Karoo: ecology patterns and Processes. Cambridge University Press, Cambridge (in press).

    Google Scholar 

  • Diggle, P. J. 1983. Statistical Analysis of Spatial Point Patterns. Academic Press, London.

    Google Scholar 

  • Esler, K. J.&Cowling, R. M. 1993. Edaphic factors and competition as determinants of pattern in South African karoo vegetation. S. A. J. Bot. 58: 461-468.

    Google Scholar 

  • Goldberg, D. & Novoplansky, A. 1997. On the relative importance of competition in unproductive environments. J. Ecol. 85: 409-418.

    Google Scholar 

  • Haase, P. 1995. Spatial pattern analysis in ecology based on Ripley's K-function: Introduction and methods of edge correction. J. Veg. Sci. 6: 575-582.

    Google Scholar 

  • Hacker, S. D. & Gaines, S. D. 1997. Some implications of direct positive interactions for community species diversity. Ecology 78(7): 1990-2003.

    Google Scholar 

  • Hassell, M. P., May, R. M., Pacala, S. W. & Chesson, P. L. 1991. The persistence of host-parisitoid associations in patchy environments. I. A general criterion. Am. Nat. 138(3): 568-583.

    Google Scholar 

  • Hilton-Taylor, C. 1996. Patterns and characteristics of the flora of the Succulent Karoo Biome, southern Africa. Pp. 58-72. In: van der Maesen, L. J. E., van der Burgt, X. M. & van Medenbach de Rooy, J. M. (eds), The Biodiversity of African Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Holmgren, M., Scheffer, M. & Huston, M. A. 1997. The interplay of facilitation and competition in plant communities. Ecology 78(7): 1966-1975.

    Google Scholar 

  • Hubbell, S. P. & Foster, R. B. 1990. The fate of juvenile trees in a neotropical forest: implications for the natural maintenance of tropical tree diversity. Pp. 325-349 In: Bawa, K. S. & Hadley, M. (eds), Reproductive Ecology of Tropical Forest Plants. UNESCO/International Union of Biological Sciences, Paris.

    Google Scholar 

  • Hubbell, S. P. & Foster, R. B. 1992. Short-term dynamics of a neotropical forest: why ecological research matters to tropical conservation and management. Oikos 63(1): 48-61.

    Google Scholar 

  • Jones, C. G., Lawton, J. H. & Shachak, M. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78(7): 1946-1957.

    Google Scholar 

  • Jürgens, N. 1991. A new approach to the Namib Region. I: Phytogeographic subdivision. Vegetatio 97: 21-38.

    Google Scholar 

  • Levine, S. 1980. Indirect mutualism: Variations on a theme. Am. Nat. 116: 441-448.

    Google Scholar 

  • Ludwig, J. A. & Reynolds, J. F. 1988. Statistical Ecology. A Primer on Methods and Computing. John Wiley & Sons, New York.

    Google Scholar 

  • May, R. M. 1982. Mutualistic interactions among species. Nature 296: 803-804.

    Google Scholar 

  • Milton, S. J., Yeaton, R. I., Dean, W. R. J. and Vlok, J. H. J. 1997. Succulent Karoo. pp. 131-166. In: Cowling, R. M., Richardson, D. M. & Pierce, S. M. (eds), Vegetation of Southern Africa. Cambridge University Press, Cambridge.

    Google Scholar 

  • Monteith, J. L. & Unsworth, M. H. 1990. Principles of Environmental Physics. 2nd Ed. Edward Arnold, London.

    Google Scholar 

  • Prentice, I. C. & Werger, M. J. A. 1985. Clump spacing in a dwarf desert shrub community. Vegetatio 63: 133-139.

    Google Scholar 

  • Phillips, D. L. & MacMahon, J. A. 1981. Competition and spacing patterns in desert shrubs. J. Ecol. 69: 97-115.

    Google Scholar 

  • Randall, J. M. & Rejmánek, M. 1993. Interference of bull thistle (Cirsium vulgare) with growth of ponderosa pine (Pinus ponderosa) seedlings in a forest plantation. Can. J. For. Res. 23: 1507-1513.

    Google Scholar 

  • Rebertus, A. J., Williamson, G. B. & Moser, E. B. 1989. Fireinduces changes in Quercus laevis spatial pattern in Florida sandhills. J. Ecol. 77: 638-650.

    Google Scholar 

  • Ripley, B. D. 1987. Spatial point pattern analysis in ecology. Pp. 407-431. In: Legendre, P. & Legendre, L. (eds), Developments in Numerical Ecology. Springer-Verlag, Berlin.

    Google Scholar 

  • Shmida, A. & Ellner, S. 1984. Coexistence of plant species with similar niches. Vegetatio 58: 29-55.

    Google Scholar 

  • Silvertown, J. & Wilson, J. B. 1994. Community structure in a desert perennial community. Ecology 75(2): 409-417.

    Google Scholar 

  • Stock, W. D., Dlamini, T. & Cowling, R. M. 1999. Plant-induced fertile islands as possible indicators of desertification in a succulent desert ecosystem in northern Namaqualand, South Africa. Plant Ecol. 142: 161-167 (this issue).

    Google Scholar 

  • Valiente-Banuet, A. & Ezcurra, E. 1991. Shade as a cause of the association between the cactus Neobuxbaumia tetetzo and the nurse plant Mimosa luisana in the Tehuacán valley, Mexico. J. Ecol. 79: 961-971.

    Google Scholar 

  • Von Willert, D. J., Eller, B. M., Werger, M. J. A., Brinckmann, E. & Ihlenfeldt, H-D. 1992. Life Strategies of Succulents in Deserts with Special Reference to the Namib Desert. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wiegand, T., Milton, S. J. & Wissel, C. 1995. A simulation model for a shrub ecosystem in the semiarid karoo, South Africa. Ecology 76(7): 2205-2221.

    Google Scholar 

  • Wilson, W. G. & Nisbet, R. M. 1997. Cooperation and competition along smooth environmental gradients. Ecology 78(7): 2004-2017.

    Google Scholar 

  • Wright, S. J. & Howe, H. F. 1987. Pattern and mortality in Colorado Desert plants. Oecologia 73: 543-552.

    Google Scholar 

  • Yeaton, R. I. & Esler, K. J. 1990. The dynamics of a succulent karoo vegetation. A study of species association and recruitment. Vegetatio 88: 103-113.

    Google Scholar 

  • Yeaton, R. I. & Manzanares, A. R. 1986. Organization of vegetation mosaics in the Acacia schaffneri-Opuntia streptacantha association, southern Chihuanhuan Desert, Mexico. J. Ecol. 74: 211-217.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eccles, N., Esler, K. & Cowling, R. Spatial pattern analysis in Namaqualand desert plant communities: evidence for general positive interactions. Plant Ecology 142, 71–85 (1999). https://doi.org/10.1023/A:1009857824912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009857824912

Navigation