Skip to main content
Log in

Non-ergodicity of Two Particles Interacting via a Smooth Potential

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine two point particles interacting via a smooth Lennard-Jones-type potential of finite range on a two-dimensional torus. We find situations under which this system contains a stable, elliptic periodic orbit and hence is not ergodic. This result is in contrast to the case of hard spheres interacting via inelastic collision, which are always ergodic for two particles, are conjectured to be ergodic for arbitrarily many particles, and can never contain elliptic periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Szasz, Boltzmann's ergodic hypothesis, a conjecture for the centuries?, Studia Sci. Math. Hung. 32:299-322 (1996).

    Google Scholar 

  2. N. S. Krylov, Works on the Foundation of Statistical Physics (Princeton University Press, Princeton, New Jersey, 1979).

    Google Scholar 

  3. Ya. G. Sinai, On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics, Dokl. Akad. Nauk. SSSR 153:1261-1264 (1963).

    Google Scholar 

  4. Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Russ. Math. Surv. 25:137-189 (1970).

    Google Scholar 

  5. Ya. G. Sinai and N. Chernov, Ergodic properties of some systems of two-dimensional disks and three-dimensional balls, Uspekhi Mat. Nauk. 42, No. 3 (255):153-174 (1987).

    Google Scholar 

  6. A. Kramli, N. Simanyi, and D. Szasz, Ergodic properties of semi-dispersing billiards I. Two cylindric scatterers in the 3-D torus, Nonlinearity 2:311-326 (1989).

    Google Scholar 

  7. A. Kramli, N. Simanyi, and D. Szasz, A “transversal” fundamental theorem for semi-dispersing billiards, Commun. Math. Phys. 535-560 (1990).

  8. A. Kramli, N. Simanyi, and D. Szasz, The K-property of three billiard balls, Annals of Mathematics 133:37-72 (1991).

    Google Scholar 

  9. A. Kramli, N. Simanyi, and D. Szasz, The K-property of four billiard balls, Commun. Math. Phys. 144:107-148 (1992).

    Google Scholar 

  10. N. Simanyi and D. Szasz, The Boltzmann-Sinai ergodic hypothesis for hard ball systems, E. Schrödinger Institute Preprint 337 (1996).

  11. D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976).

    Google Scholar 

  12. D. Turaev and V. Rom-Kedar, Elliptic islands appearing in near-ergodic flows, Non-linearity 11:575-600 (1998).

    Google Scholar 

  13. M. Wojtkowski, Linearly stable orbits in 3 dimensional billiards, Comm. Math. Phys. 129:319-327 (1990).

    Google Scholar 

  14. M. Hermann, lecture at University of Pennsylvania (November 1995).

  15. V. J. Donnay, Elliptic islands in generalized Sinai billiards, Ergod. Th. & Dynam. Sys. 16:975-1010 (1996).

    Google Scholar 

  16. H. Goldstein, Classical Mechanics (Addison-Wesley, London, 1950).

    Google Scholar 

  17. N. Simanyi and M. Wojtkowski, Two-particle billiard system with arbitrary mass ratio, Ergod. Th. & Dynam. Sys. 9:165-171 (1989).

    Google Scholar 

  18. I. Kubo, Perturbed billiard systems, I. The ergodicity of the motion of a particle in a compound central field, Nagoya Math. J. 61:1-57 (1976).

    Google Scholar 

  19. I. Kubo and H. Murata, Perturbed billiard systems, II. Bernoulli properties, Nagoya Math. J. 81:1-25 (1981).

    Google Scholar 

  20. A. Vetier, Sinai billiard in potential field (construction of fibers), P. Révész, ed., Coll. Math. Soc. J. Bolyai 36:1079–1146 (1982).

  21. A. Vetier, Sinai billiard in potential field (absolute continuity), Proc. 3rd Pann. Symp., J. Mogyoródi, I. Vincze, and W. Wertz, eds., 341-351 (1982).

  22. P. R. Baldwin, Soft billiard systems, Physica D 29:321-342 (1988).

    Google Scholar 

  23. A. Knauf, On soft billiard systems, Physica D 36:259-262 1989).

    Google Scholar 

  24. A. Kramli, N. Simanyi, and D. Szasz, Dispersing billiards without focal points on surfaces are ergodic, Commun. Math. Phys. 125:439-457 (1989).

    Google Scholar 

  25. V. J. Donnay and C. Liverani, Potentials on the two-torus for which the Hamiltonian flow is ergodic, Commun. Math. Phys. 135:267-302 (1991).

    Google Scholar 

  26. R. Markarian, Ergodic properties of plane billiards with symmetric potentials, Comm. Math. Phys. 145:435-446 (1992).

    Google Scholar 

  27. L. A. Bunimovich, On the ergodic properties of nowhere dispersing billiards, Comm. Math. Phys. 65:295-312 (1979).

    Google Scholar 

  28. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, New York, 1980).

    Google Scholar 

  29. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  30. V. Rom-Kedar and D. Turaev, Big islands in dispersing billiard-like potentials, Physica D 130:187-210 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnay, V.J. Non-ergodicity of Two Particles Interacting via a Smooth Potential. Journal of Statistical Physics 96, 1021–1048 (1999). https://doi.org/10.1023/A:1004688200435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004688200435

Navigation