Skip to main content
Log in

The Two-Particle Correlation Function for Systems with Long-Range Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the truncated two-particle correlation function in particle systems with long range interactions. For Coulombian and soft potentials, we define and give well-posedness results for the equilibrium correlations. In the Coulombian case, we prove the onset of the Debye screening length in the equilibrium correlations, for suitable velocity distributions. Additionally, we give precise estimates on the effective range of interaction between particles. In the case of soft potential interaction the equilibrium correlations and their fluxes in the space of velocities are shown to be linearly stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Interscience Publishers, London (1975)

    MATH  Google Scholar 

  2. Balescu, R.: Statistical Mechanics of Charged Particles. Monographs in Statistical Physics and Thermodynamics, vol. 4. Interscience Publishers, London (1963)

    MATH  Google Scholar 

  3. Bobylev, A., Pulvirenti, M., Saffirio, C.: From particle systems to the Landau equation: a consistency result. Commun. Math. Phys. 319(3), 683–702 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bogoliubov, N.: Problems of a Dynamical Theory in Statistical Physics. Studies in Statistical Mechanics, vol. I, pp. 1–118. North-Holland, Amsterdam (1962)

    Google Scholar 

  5. Braun, W., Hepp, K.: TheVlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56(2), 101–113 (1977)

    Article  ADS  Google Scholar 

  6. Degond, P.: Spectral theory of the linearized Vlasov-Poisson equation. Trans. Am. Math. Soc. 294(2), 435–453 (1986)

    Article  MathSciNet  Google Scholar 

  7. Desvillettes, L., Miot, E., Saffirio, C.: Polynomial propagation of moments and global existence for a Vlasov-Poisson system with a point charge. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(2), 373–400 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Desvillettes, L., Pulvirenti, M.: The linear Boltzmann equation for long-range forces: a derivation from particle systems. Math. Models Methods Appl. Sci. 09(08), 1123–1145 (1999)

    Article  MathSciNet  Google Scholar 

  9. Glassey, R., Schaeffer, J.: On time decay rates in Landau damping. Commun. Part. Differ. Equ. 20(3–4), 647–676 (1995)

    Article  MathSciNet  Google Scholar 

  10. Glassey, R., Schaeffer, J.: Time decay for solutions to the linearized Vlasov equation. Transp. Theory Stat. Phys. 23(4), 411–453 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  11. Guernsey, R.: Kinetic equation for a completely ionized gas. Phys. Fluids 5, 322–328 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  12. Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231(3), 391–434 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. Krommes, J.: Two new proofs of the test particle superposition principle of plasma kinetic theory. Phys. Fluids 19(5), 649–655 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lancellotti, C.: On the fluctuations about the Vlasov limit for \(N\)-particle systems with meanfield interactions. J. Stat. Phys. 136(4), 643–665 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lancellotti, C.: On the Glassey-Schaeffer estimates for linear Landau damping. J. Comput. Theor. Transp. 44(4-5), 198–214 (2015)

    Article  MathSciNet  Google Scholar 

  16. Lancellotti, C.: Time-asymptotic evolution of spatially uniform Gaussian Vlasov fluctuation fields. J. Stat. Phys. 163(4), 868–886 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lenard, A.: On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10, 390–400 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lifshitz, E., Pitaevskii, L.: Course of Theoretical Physics. Pergamon Press, Oxford (1981)

    Google Scholar 

  19. Marcozzi, M., Nota, A.: Derivation of the linear Landau equation and linear Boltzmann equation from the Lorentz model with magnetic field. J. Stat. Phys. 162(6), 1539–1565 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)

    Article  MathSciNet  Google Scholar 

  21. Muskhelishvili, N.: Singular Integral Equations. Dover Publications Inc, New York (1992)

    Google Scholar 

  22. Nota, A., Simonella, S., Velázquez, J.: On the theory of Lorentz gases with long range interactions. Rev. Math. Phys. 30(03), 1850007 (2018)

    Article  MathSciNet  Google Scholar 

  23. Oberman, C., Williams, E.: Theory of fluctuations in plasma. Ann. Phys. 20, 78–118 (1983)

    MathSciNet  Google Scholar 

  24. Penrose, O.: Electrostatic instabilities of a uniform non-Maxwellian plasma. Phys. Fluids 3(2), 258–265 (1960)

    Article  ADS  Google Scholar 

  25. Piasecki, J., Szamel, G.: Stochastic dynamics of a test particle in fluids with weak long-range forces. Physica A 143, 114–122 (1987)

    Article  ADS  Google Scholar 

  26. Rostoker, N.: Superposition of Dressed Test Particles. Phys. Fluids 7(4), 479–490 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  27. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Modern Phys. 52(3), 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  28. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, New York (2012)

    MATH  Google Scholar 

  29. Strain, R.: On the linearized Balescu-Lenard equation. Commun. Part. Differ. Equ. 32(10–12), 1551–1586 (2007)

    Article  MathSciNet  Google Scholar 

  30. Velázquez, J.J.L., Winter, R.: From a non-Markovian system to the Landau equation. Commun. Math. Phys. 361(1), 239–287 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Villani, C.: A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of Mathematical Fluid Dynamics, vol. 1. North-Holland, Amsterdam (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support through the CRC 1060 The mathematics of emergent effects at the University of Bonn that is funded through the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Winter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez, J.J.L., Winter, R. The Two-Particle Correlation Function for Systems with Long-Range Interactions. J Stat Phys 173, 1–41 (2018). https://doi.org/10.1007/s10955-018-2121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2121-y

Keywords

Navigation