Skip to main content
Log in

Analyticity in Hubbard Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Hubbard model describes a lattice system of quantum particles with local (on-site) interactions. Its free energy is analytic when βt is small, or βt 2/U is small; here, β is the inverse temperature, U the on-site repulsion, and t the hopping coefficient. For more general models with Hamiltonian H=V+T where V involves local terms only, the free energy is analytic when βT‖ is small, irrespective of V. There exists a unique Gibbs state showing exponential decay of spatial correlations. These properties are rigorously established in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Borgs, R. Kotecký, and D. Ueltschi, Incompressible phase in lattice systems of interacting bosons, unpublished, available at http://dpwww.epfl.ch/instituts/ipt/publications.html (1997).

  2. K. A. Chao, J. Spalek, and A. L. Oleś, Canonical perturbation expansion of the Hubbard model, Phys. Rev. B 18:3453–3464 (1978).

    Google Scholar 

  3. N. Datta, R. Fernaádez, and J. Fröhlich, Effective Hamiltonians and phase diagrams for tight-binding models, preprint, math-ph/9809007 (1998).

  4. N. Datta, R. Fernández, J. Fröhlich, and L. Rey-Bellet, Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy, Helv. Phys. Acta 69:752–820 (1996).

    Google Scholar 

  5. R. L. Dobrushin, Estimates of semiinvariants for the Ising model at low temperatures, preprint ESI 125, available at http://esi.ac.at (1994).

  6. F.J. Dyson, E. H. Lieb, and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Stat. Phys. 18:335–383 (1978).

    Google Scholar 

  7. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B 40:546–570 (1989).

    Google Scholar 

  8. Ch. Gruber and N. Macris, The Falicov-Kimball model: A review of exact results and extensions, Helv. Phys. Acta 69:850–907 (1996).

    Google Scholar 

  9. K. Huang, Statistical Mechanics, 2nd ed. (John Wiley & Sons, 1987).

  10. J. Hubbard, Electron correlations in narrow energy bands, Proc. Roy. Soc. London A 276:238–257 (1963); II. The degenerate case 277:237–259 (1964); III. An improved solution 281:401–419 (1964).

    Google Scholar 

  11. T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order, Physica A 138:320–358 (1986).

    Google Scholar 

  12. D. J. Klein and W. A. Seitz, Perturbation expansion of the linear Hubbard model, Phys. Rev. B 8:2236–2247 (1973).

    Google Scholar 

  13. R. Kotecky_ and D. Preiss, Cluster expansion for abstract polymer models, Commun. Math. Phys. 103:491–498 (1986).

    Google Scholar 

  14. R. Kotecký and D. Ueltschi, Effective interactions due to quantum fluctuations, preprint, available at http://dpwww.epfi.ch;/instituts/ipt/publications.html, to appear in Commun. Math. Phys. (1999).

  15. J. L. Lebowitz and N. Macris, Lang range order in the Falicov-Kimball model: Extension of Kennedy-Lieb theorem, Rev. Math. Phys. 6:927–946 (1994).

    Google Scholar 

  16. E. H. Lieb, The Hubbard model: Some rigorous results and open problems, in Advances in Dynamical Systems and Quantum Physics (World Scientific, 1993).

  17. A. H. MacDonald, S. M. Girvin, and D. Yoshioka, t/U expansion for the Hubbard model, Phys. Rev. B 37:9753–9756 (1988).

    Google Scholar 

  18. A. Messager and S. Miracle-Solè, Low temperature states in the Falicov-Kimball model, Rev. Math. Phys. 8:271–299 (1996).

    Google Scholar 

  19. Y. M. Park and H. J. Yoo, Uniqueness and clustering properties of Gibbs states for classical and quantum unbounded spin systems, J. Stat. Phys. 80:223–271 (1995).

    Google Scholar 

  20. O. Penrose and L. Onsager, Bose-Einstein condensation and liquid Helium, Phys. Rev. 104:576–584 (1956).

    Google Scholar 

  21. C. N. Yang, Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors, Rev. Mod. Phys. 34:694–704 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueltschi, D. Analyticity in Hubbard Models. Journal of Statistical Physics 95, 693–717 (1999). https://doi.org/10.1023/A:1004599410952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004599410952

Navigation