Skip to main content
Log in

Effective Hamiltonians and Phase Diagrams for Tight-Binding Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present rigorous results for several variants of the Hubbard model in the strong-coupling regime. We establish a mathematically controlled perturbation expansion which shows how previously proposed effective interactions are, in fact, leading-order terms of well-defined (volume-independent) unitarily equivalent interactions. In addition, in the very asymmetric (Falicov–Kimball) regime, we are able to apply recently developed phase-diagram technology (quantum Pirogov–Sinai theory) to conclude that the zero-temperature phase diagrams obtained for the leading classical part remain valid, except for thin excluded regions and small deformations, for the full-fledged quantum interaction at zero or low temperature. Moreover, the phase diagram is stable against addition of arbitrary, but sufficiently small further quantum terms that do not break the ground-state symmetries. This generalizes and unifies a number of previous results on the subject; in particular, published results on the zero-temperature phase diagram of the Falikov–Kimball model (with and without magnetic flux) are extended to small temperatures and/or small ionic hopping. We give explicit expressions for the first few orders, in the hopping amplitude, of equivalent interactions, and we describe the resulting phase diagram. Our approach yields algorithms to compute equivalent interactions to arbitrarily high order in the hopping amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Albanese, On the spectrum of the Heisenberg Hamiltonian, J. Stat. Phys. 55:297-309 (1989).

    Google Scholar 

  2. C. Albanese, Unitary dressing transformations and exponential decay below threshold for quantum spin systems, Parts I and II, Commun. Math. Phys. 134:1-27 (1990).

    Google Scholar 

  3. C. Albanese, Unitary dressing transformations and exponential decay below threshold for quantum spin systems, Parts III and IV, Commun. Math. Phys. 134:237-272 (1990).

    Google Scholar 

  4. P. W. Anderson, New approach to the theory of superexchange interactions, Phys. Rev. 115:2-13 (1959).

    Google Scholar 

  5. C. Borgs, R. Kotecký, and D. Ueltschi, Low temperature phase diagrams for quantum perturbations of classical spin systems, Commun. Math. Phys. 181:409-46 (1996).

    Google Scholar 

  6. J. Bricmont and J. Slawny, First order phase transitions and perturbation theory, in Statistical Mechanics and Field Theory: Mathematical Aspects (Proceedings, Groningen, 1985), T. C. Dorlas, N. M. Hugenholtz, and M. Winnink, eds. (Springer-Verlag, Berlin/Heidelberg/New York, 1986) (Lecture Notes in Physics, Vol. 257).

    Google Scholar 

  7. J. Bricmont and J. Slawny, Phase transitions in systems with a finite number of dominant ground states, J. Stat. Phys. 54:89-161 (1989).

    Google Scholar 

  8. L. N. Bulaevskii, Quasihomopolar electron levels in crystals and molecules, Zh. Eksp. Teor. Fiz. 51:230-40 (1966). [Sov. Phys. JETP 24:154-60 (1967)].

    Google Scholar 

  9. K. A. Chao, J. Spałek, and A. M. Oleś, Kinetic exchange interaction in a narrow S-band, J. Phys. C 10:L271-6 (1977).

    Google Scholar 

  10. K. A. Chao, J. Spałek, and A. M. Oleś, Canonical perturbation expansion of the Hubbard model, Phys. Rev. B 18:3453-64 (1978).

    Google Scholar 

  11. N. Datta, R. Fernández, and J. Fröhlich, Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states, J. Stat. Phys. 84:455-534 (1996).

    Google Scholar 

  12. N. Datta, R. Fernández, J. Fröhlich, and L. Rey-Bellet, Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy, Helv. Phys. Acta 69:752-820, 1996. Reprinted in The Mathematical Side of the Coin. Essays in Mathematical Physics (Birkhäuser, 1996).

    Google Scholar 

  13. R. L. Dobrushin, Existence of a phase transition in the two-dimensional and three-dimensional Ising models, Soviet Phys. Doklady 10:111-113 (1965).

    Google Scholar 

  14. H. Eskes, A. M. Olés, M. B. J. Meinders, and W. Stephan, Spectral properties of the Hubbard model, Phys. Rev. B 50:17980-8002 (1994).

    Google Scholar 

  15. K. Friedrichs, Perturbation of Spectra in Hilbert Space, Am. Math. Soc. (Providence, R.I., 1965).

    Google Scholar 

  16. J. Fröhlich and L. Rey-Bellet, Low-temperature phase diagrams of quantum lattice systems. III. Eamples. Helv. Phys. Acta 69:821-849, 1996. Reprinted in The Mathematical Side of the Coin. Essays in Mathematical Physics (Birkhäuser, 1996).

    Google Scholar 

  17. J. Glimm, Boson fields with the: Φ4: interaction in three dimensions, Commun. Math. Phys. 10:1-47 (1968).

    Google Scholar 

  18. R. B. Griffiths, Peierls’ proof of spontaneous magnetization of a two-dimensional Ising ferromagnet, Phys. Rev. A 136:437-439 (1964).

    Google Scholar 

  19. C. Gross, R. Joynt, and T. M. Rice, Antiferromagnetic correlations in almost-localized Fermi liquids, Phys. Rev. B 36:381-93 (1987).

    Google Scholar 

  20. C. Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger, Ground states of the spinless Falicov-Kimball model, Phys. Rev. B 41:2198-209 (1990).

    Google Scholar 

  21. C. Gruber, J. Jedrzejewski, and P. Lemberger, Ground states of the spinless Falicov-Kimball model. II, J. Statist. Phys. 66:913-38 (1992).

    Google Scholar 

  22. C. Gruber and N. Macris, The Falicov_Kimball model: A review of exact results and extensions, Helv. Phys. Acta 69:850–907 (1996). Reprinted in The Mathematical Side of the Coin. Essays in Mathematical Physics (Birkhäuser, 1996).

    Google Scholar 

  23. C. Gruber, N. Macris, A. Messager, and D. Ueltschi, Ground states and flux configurations of the two-dimensional Falicov-Kimball model, J. Statist. Phys. 86:57-108 (1997).

    Google Scholar 

  24. C. Gruber and A. Sütõ, Phase diagrams of lattice systems of residual entropy, J. Stat. Phys. 42:113-142 (1988).

    Google Scholar 

  25. C. Gruber, D. Ueltschi and J. Jedrzejewski, Molecule formation and the Farey tree in the one-dimensional Falicov-Kimball model, J. Stat. Phys. 76:125-157 (1994).

    Google Scholar 

  26. A. B. Harris and R. V. Lange, Single-particle excitations in narrow energy bands, Phys. Rev. 157:295-314 (1967).

    Google Scholar 

  27. W. Holsztynski and J. Slawny, Peierls condition and the number of ground states, Common. Math. Phys. 61:177-190 (1978).

    Google Scholar 

  28. M. Hybertsen, M. Schlüter, and N. E. Christensen, Calculation of Coulomb-interaction parameters for La2CuO4 using a constrained-density-functional approach, Phys. Rev. B 39:9028-41 (1989).

    Google Scholar 

  29. M. Hybertsen, E. B. Stechel, M. Schlüter, and D. R. Jennison, Renormalization from density functional theory to strong-coupling models for electronic states in Cu-O materials, Phys. Res. B 41:11068-72 (1990).

    Google Scholar 

  30. T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, Berlin/Heidelberg/New York, 1966).

    Google Scholar 

  31. T. Kennedy, Some rigorous results on the ground states of the Falicov-Kimball model, Rev. Math. Phys. 6:901-25 (1694).

    Google Scholar 

  32. T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order, Physica A 138:320-58 (1986).

    Google Scholar 

  33. D. J. Klein and W. A. Seitz, Perturbation expansion of the linear Hubbard model, Phys. Rev. B 8:2236-47 (1973).

    Google Scholar 

  34. R. Kotecký, L. Laanait, A. Messager, and S. Miracle-Solé, A spin-1 lattice model of microemulsions at low temperatures, J. Phys. A 26:5285-93 (1993).

    Google Scholar 

  35. R. Kotecký and D. Ueltschi, Effective interactions due to quantum fluctuations. Preprint (1998), can be retrieved from http://www.ma.utexas.edu/mp_arc/, preprint 98-258.

  36. J. L. Lebowitz and N. Macris, Long range order in the Falicov-Kimball model: Extension of Kennedy-Lieb theorem, Rev. Math. Phys. 6:927-46 (1994).

    Google Scholar 

  37. A. H. MacDonald, S. M. Girvin, and D. Yoshioka, t/U expansion for the Hubbard model, Phys. Rev. B 37:9753-6 (1988).

    Google Scholar 

  38. A. Messager and S. Miracle-Solé, Low temperature states in the Falicov-Kimball model, Rev. Math. Phys. 8:271-99 (1996).

    Google Scholar 

  39. R. Peierls, Ising's model of ferromagnetism, Proc. Cambridge Philos. Soc. 32:477-481 (1936).

    Google Scholar 

  40. S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems, Continuation, Theor. Math. Phys. 26:39-49 (1976). [Russian original: Theor. Mat. Fiz. 26:61-76 (1976)].

    Google Scholar 

  41. S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems. I, Theor. Math. Phys. 25:1185-92 (1976). [Russian original: Theor. Mat. Fiz. 25:358-69 (1975)].

    Google Scholar 

  42. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic Press, New York/London, 1978).

    Google Scholar 

  43. Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford/New York, 1982).

    Google Scholar 

  44. J. Slawny, Low temperature properties of classical lattice systems: phase transitions and phase diagrams, in Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London/New York, 1985).

    Google Scholar 

  45. M. Takahashi, Half-filled Hubbard model at low temperatures, J. Phys. C 10:1289-301 (1977).

    Google Scholar 

  46. H. Tasaki, The Hubbard model: Introduction and some rigorous results, Markov Proc. Rel. Fields 2:183-208 (1996).

    Google Scholar 

  47. G. I. Watson and R. Lemanski, The ground-state phase diagram of the two-dimensional Falicov-Kimball model, J. Phys. Condens. Matter 7:9521-42 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, N., Fernández, R. & Fröhlich, J. Effective Hamiltonians and Phase Diagrams for Tight-Binding Models. Journal of Statistical Physics 96, 545–611 (1999). https://doi.org/10.1023/A:1004594122474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004594122474

Navigation