Skip to main content
Log in

A Semiclassical Theory of a Dissipative Henon—Heiles System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A semiclassical theory of a dissipative Henon—Heiles system is proposed. Based on ℏ-scaling of an equation for the evolution of the Wigner quasiprobability distribution function in the presence of dissipation and thermal diffusion, we derive a semiclassical equation for quantum fluctuations, governed by the dissipation and the curvature of the classical potential. We show how the initial quantum noise gets amplified by classical chaotic diffusion, which is expressible in terms of a correlation of stochastic fluctuations of the curvature of the potential due to classical chaos, and ultimately settles down to equilibrium under the influence of dissipation. We also establish that there exists a critical limit to the expansion of phase space. The limit is set by chaotic diffusion and dissipation. Our semiclassical analysis is corroborated by numerical simulation of a quantum operator master equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J.-P. Eckmann, Rev. Mod. Phys. 53:643 (1981).

    Google Scholar 

  2. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).

    Google Scholar 

  3. G. Gangopadhay and D. S. Ray, in Advances in Multiphoton Processes and Spectroscopy, Vol. 8, S. H. Lin, A. A. Villayes, and F. Fujimura, eds. (World Scientific, 1993).

  4. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62:251 (1990).

    Google Scholar 

  5. A. O. Caldeira and A. J. Leggett, Physica A 121:587 (1983).

    Google Scholar 

  6. G. W. Ford and R. F. O'Connel, Phys. Rev. Letts. 77:798 (1996).

    Google Scholar 

  7. T. Dittrich and R. Graham, Phys. Rev. A 42:4647 (1990).

    Google Scholar 

  8. B. Sundaram and P. W. Milonni, Phys. Rev. E 51:1971 (1995).

    Google Scholar 

  9. R. Blumel and U. Smilansky, Phys. Rev. Letts. 69:217 (1992).

    Google Scholar 

  10. N. Ben-Tal, N. Moiseyev, and H. J. Korsch, Phys. Rev. A 46:1669 (1992).

    Google Scholar 

  11. S. Chaudhuri, D. Majumdar, and D. S. Ray, Phys. Rev. E 53:5816 (1996).

    Google Scholar 

  12. A. Suärez, R. Silbey, and I. Oppenheim, J. Chem. Phys. 97:5101 (1992).

    Google Scholar 

  13. A. Tameshtit and J. E. Sipe, Phys. Rev. E 51:1582 (1995).

    Google Scholar 

  14. T. Shimizu, Phys. Letts. A 140:343 (1989).

    Google Scholar 

  15. L. L. Bonilla and F. Guinea, Phys. Rev. A 45:7718 (1992).

    Google Scholar 

  16. T. P. Spiller and J. E. Ralph, Phys. Letts. A 194:235 (1994).

    Google Scholar 

  17. A. M. Kowalski, A. Plastino, and A. N. Proto, Phys. Rev. E 52:165 (1995).

    Google Scholar 

  18. W. H. Zurek and J. P. Paz, Phys. Rev. Letts. 72:2508 (1994).

    Google Scholar 

  19. R. F. Fox and T. C. Elston, Phys. Rev. E 49:3683 (1994).

    Google Scholar 

  20. D. Cohen, Phys. Rev. Letts. 78:2878 (1997); Phys. Rev. E 55:1422 (1997); J. Phys. A Math. and Gen. 31:8199 (1998).

    Google Scholar 

  21. M. Henon and C. Heiles, Astro. J. 69:73 (1964).

    Google Scholar 

  22. M. Toda, Phys. Letts. A 48:335 (1974).

    Google Scholar 

  23. P. Brumer and J. W. Duff, J. Chem. Phys. 65:3566 (1976).

    Google Scholar 

  24. S. Chaudhuri, G. Gangopadhyay, and D. S. Ray, Phys. Rev. E 47:311 (1993).

    Google Scholar 

  25. S. Chaudhuri, G. Gangopadhyay, and D. S. Ray, Phys. Rev. E 52:2262 (1995).

    Google Scholar 

  26. N. G. van Kampen, Phys. Rep. 24:171 (1976).

    Google Scholar 

  27. N. G. van Kampen, Stochastic Processes in Physics, Chemistry and Biology (North-Holland, 1983).

  28. E. P. Wigner, Phys. Rev. 40:749 (1932).

    Google Scholar 

  29. G. Gangopadhyay and D. S. Ray, J. Chem. Phys. 96:4693 (1992); F. Haake, H. Risken, C. Savage, and D. F. Walls, Phys. Rev. A 34:3969 (1986).

    Google Scholar 

  30. G. Casati, B. V. Chirikov, F. M. Izrailev, and J. Ford, in Stochastic Behaviour in Classical and Quantum Hamiltonian Systems, Lecture Notes in Physics, Vol. 93, G. Casati and J. Ford, eds. (Springer-Verlag, New York, 1979), p. 334.

    Google Scholar 

  31. See, for example, A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bag, B.C., Ray, D.S. A Semiclassical Theory of a Dissipative Henon—Heiles System. Journal of Statistical Physics 96, 271–302 (1999). https://doi.org/10.1023/A:1004528601324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004528601324

Navigation