Skip to main content

Diffusion Without Spreading of a Wave Packet in Nonlinear Random Models

  • Conference paper
  • First Online:
Chaos, Fractals and Complexity (COSA-Net 2022)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

  • 252 Accesses

Abstract

We discuss the long time behavior of a finite energy wave packet in nonlinear Hamiltonians on infinite lattices at arbitrary dimension, exhibiting linear Anderson localization. Strong arguments both mathematical and numerical, suggest for infinite models that small amplitude wave packets may generate stationary quasiperiodic solutions (KAM tori) almost indistinguishable from linear wave packets. The probability of this event is non vanishing at small enough amplitude and goes to unity at amplitude zero. Most other wave packets (non KAM tori) are chaotic. We discuss the Arnold diffusion conjecture (recently proven) and propose a modified Boltzmann statistics for wave packets valid in generic models. The consequence is that the probability that a chaotic wave packet spreads to zero amplitude is zero. It must always remain focused around one or few chaotic spots which wander randomly over the whole system and generate subdiffusion. In this paper, we study a class of so–called Ding Dong models, where the nonlinearities are replaced by hard core potentials, which also generate subdiffusion. We prove rigorously for these models that spreading is impossible for any initial wave packet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Google Scholar 

  2. Aubry, S., André, G.: Analyticity breaking and Anderson localization in incommensurate lattices Ann. Israel Phys. Soc. 3(133), 18 (1980)

    Google Scholar 

  3. Pikovsky, A.S., Shepelyansky, D.L.: Destruction of Anderson localization by a weak nonlinearity. Phys. Rev. Lett. 100, 094101 (2008)

    Article  ADS  Google Scholar 

  4. Flach, S., Krimer, D.O., Skokos, C.: Universal spreading of wave packets in disordered nonlinear systems. Phys. Rev. Lett. 102, 024101 (2009)

    Google Scholar 

  5. Skokos, C., Krimer, D.O., Komineas, S., Flach, S.: Delocalization of wave packets in disordered nonlinear chains. Phys. Rev. E 79, 056211 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Laptyeva, T.V., Bodyfelt, J.D., Krimer, D.O., Skokos, C., Flach, S.: The crossover from strong to weak chaos for nonlinear waves in disordered systems. EPL (Europhys. Lett.) 91(3), 30001 (2010)

    Google Scholar 

  7. Kopidakis, G., Komineas, S., Flach, S., Aubry, S.: Absence of wave packet diffusion in disordered nonlinear systems. Phys. Rev. Lett. 100 (2008)

    Google Scholar 

  8. Johansson, M., Kopidakis, G., Aubry, S.: KAM tori in 1D random discrete nonlinear Schroinger model? EPL (Europhys. Lett.) 91(5), 50001 (2010)

    Google Scholar 

  9. Aubry, S.: KAM Tori and absence of diffusion of a wave-packet in the 1D random DNLS model. Int. J. Bifur. Chaos 21(08), 2125–2145 (2011)

    Google Scholar 

  10. Pöschel, J.: A lecture of the classical KAM theorem. In: Proceedings of Symposia in Pure Mathematics, vol. 69, pp. 707–732 (2001)

    Google Scholar 

  11. Kolmogorov, A.N.: On the conservation of conditionally periodic motions for a small change in Hamiltonian function. Dokl. Akad. Nauk SSSR 98 (1954)

    Google Scholar 

  12. Biasco, L., Chierchia, L.: Explicit estimates on the measure of primary KAM tori. Annali di Matematica 197, 261–281 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Arnold, V.I.: Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk SSSR 156(1), 9–12 (1964)

    MathSciNet  Google Scholar 

  14. Cheng, C.-Q., Xue, J.: Arnold diffusion in nearly integrable Hamiltonian systems of arbitrary degrees of freedom (2019). arXiv:1503.04153v5

  15. https://mathoverflow.net/questions/74279/example-of-a-measure-preserving-system-with-dense-orbits-that-is-not-ergodic

  16. Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly integrable Hamiltonian system. Uspehi Mat. Nauk 32(6(198)), 5–66, 287 (1977)

    Google Scholar 

  17. Bambusi, D., Langella, B.: A simple proof for a \(C^{\infty }\) Nekhoroshev theorem (2020). ArXiv:2002.06985v1

  18. Meiss, J.D.: Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64, 795 (1992)

    Google Scholar 

  19. Aubry, S.: The concept of anti-integrability: definition, theorems and application to the standard map. In: McGehee, R., Meyer, K.R. (eds.) Twist Mappings and Their Applications, pp. 7–54 (1992)

    Google Scholar 

  20. Aubry, S., MacKay, R.S., Baesens, C.: Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel-Kontorova models. Phys. D: Nonlinear Phenom. 56, 123–134 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Aubry, S., Le Daëron, P.-Y.: The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states. Phys. D: Nonlinear Phenom. 8(3), 381–422 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. MacKay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623 (1994)

    Google Scholar 

  23. Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Phys. D: Nonlinear Phenom. 103, 201–250 (1997)

    Google Scholar 

  24. Aubry, S.: Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems. Phys. D: Nonlinear Phenom. 216, 1–30 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Aubry, S., Schilling, R.: Anomalous thermostat and intraband discrete breathers. Phys. D 238, 2045–2061 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Froeschlé, C., Scheidecker, J.P.: Stochasticity of dynamical systems with increasing number of degrees of freedom. Phys. Rev. A 12, 2137 (1975)

    Google Scholar 

  27. Fröhlich, J., Spencer, T., Wayne, C.E.: Localization in disordered, nonlinear dynamical systems. J. Stat. Phys. 42, 247 (1986)

    Google Scholar 

  28. Aubry, S.: Weakly periodic structures and example. J. Phys. Colloq. 50, C3-97–C3-106 (1989). https://doi.org/10.1051/jphyscol:1989315

  29. See for example Brom, J.: The theory of almost periodic functions in constructive mathematics. Pac. J. Math. 70, 67–81 (1977)

    Google Scholar 

  30. Senyange, B., Skokos, C.: Identifying localized and spreading chaos in nonlinear disordered lattices by the Generalized Alignment Index (GALI) method. Phys. D 432, 133–154 (2022)

    Google Scholar 

  31. C.G. Antonopoulos, Ch. Skokos, T. Bountis , S.Flach Analyzing chaos in higher order disordered quartic-sextic Klein-Gordon lattices using q -statistics Chaos, Solitons and Fractals 104 (2017) 129-134

    Google Scholar 

  32. Skokos, C., Gerlach, E., Flach, S.: Frequency map analysis of spatiotemporal chaos in the nonlinear disordered Klein-Gordon lattice. Int. J. Bifur. Chaos 32(5), 2250074 (2022)

    Google Scholar 

  33. Pikovsky, A.: Scaling of energy spreading in a disordered Ding-Dong lattice. J. Stat. Mech.: Theory Exp. 2020 (2020)

    Google Scholar 

  34. Tsironis, G.P., Aubry, S.: Slow relaxation phenomena induced by breathers in nonlinear lattices. Phys. Rev. Lett. 77, 5225 (1996)

    Google Scholar 

  35. See for example Yu, C.C., Carruzzo, H.M.: Two-level systems and the tunneling model: a critical view. https://doi.org/10.48550/arXiv.2101.02787

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Aubry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aubry, S. (2023). Diffusion Without Spreading of a Wave Packet in Nonlinear Random Models. In: Bountis, T., Vallianatos, F., Provata, A., Kugiumtzis, D., Kominis, Y. (eds) Chaos, Fractals and Complexity. COSA-Net 2022. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-37404-3_1

Download citation

Publish with us

Policies and ethics