Skip to main content
Log in

Correlation Functions by Cluster Variation Method for Ising Model with NN, NNN, and Plaquette Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a procedure for calculating the pair correlation function in the context of cluster variation methods (CVM). As specific cases, we study the pair correlation function in the paramagnetic phase of the Ising model with nearest neighbors, next to nearest neighbors, and plaquette interactions in two and three dimensions. In presence of competing interactions, the so-called disorder line separates in the paramagnetic phase a region where the correlation function has the usual exponential behavior from a region where the correlation has an oscillating, exponentially damped behavior. In two dimensions, using the plaquette as the maximal cluster of the CVM approximation, we calculate the phase diagram and the disorder line for a case where a comparison is possible with known results for the eight-vertex model. In three dimensions, in the CVM cube approximation, we calculate the phase diagram and the disorder line in some cases of particular interest. The relevance of our results for experimental systems like mixtures of oil, water, and surfactant is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Kikuchi, Phys. Rev. 81:988 (1951).

    Google Scholar 

  2. G. An, J. Stat. Phys. 52:727 (1988); T. Morita, J. Stat. Phys. 59:819 (1990).

    Google Scholar 

  3. We observe that the CVM has also been used in combination with Padé approximants to estimate critical exponents. See A. Pelizzola, Phys. Rev. E 49:R2503 (1994); ib. 53:5825 (1996).

    Google Scholar 

  4. See, e.g., A. Pelizzola, Physica A 211:107 (1994).

    Google Scholar 

  5. J. M. Sanchez, Physica 111A:200 (1982).

    Google Scholar 

  6. A. Finel and D. de Fontaine, J. Stat. Phys. 43:645 (1986).

    Google Scholar 

  7. R. Kikuchi, J. Chem. Phys. 60:1071 (1974).

    Google Scholar 

  8. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    Google Scholar 

  9. M. Karowski, J. Phys. A 19:3375 (1986).

    Google Scholar 

  10. A. Cappi, P. Colangelo, G. Gonnella, and A. Maritan, Nucl. Phys. B 370:659 (1992).

    Google Scholar 

  11. G. Gonnella, S. Lise, and A. Maritan, Europhys. Lett. 32:735 (1995).

    Google Scholar 

  12. P. Colangelo, G. Gonnella, and A. Maritan, Phys. Rev. E 47:411 (1993).

    Google Scholar 

  13. R. V. Ambartzumian, G. S. Sukiasian, G. K. Savvidy, and K. G. Savvidy, Phys. Lett. B 275:99 (1992).

    Google Scholar 

  14. E. N. M. Cirillo, G. Gonnella, D. A. Johnston, and A. Pelizzola, Phys. Lett. A 226:59 (1997).

    Google Scholar 

  15. M. E. Fisher and B. Widom, J. Chem. Phys. 50:3756 (1968).

    Google Scholar 

  16. See, e. g., Gompper and M. Schick, Self-assembling Amphiphilic Systems, in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic, London, 1994).

    Google Scholar 

  17. J. L. Moran-Lopez, F. Aguilera-Granja, and J. M. Sanchez, J. Phys. Condense Matter 6:9759 (1994).

    Google Scholar 

  18. C. Buzano and M. Pretti, Phys. Revs B 56:636 (1997).

    Google Scholar 

  19. B. Widom, J. Chem. Phys. 90:2437 (1989).

    Google Scholar 

  20. J. Stephenson, J. Math. Phys. 11:420 (1970); Phys. Rev. B 1:4405 (1970).

    Google Scholar 

  21. I. Peschel and F. Rys, Phys. Lett. A 91:187 (1982).

    Google Scholar 

  22. I. G. Enting, J. Phys. C: Solid State Phys. 10:1379 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirillo, E.N.M., Gonnella, G., Troccoli, M. et al. Correlation Functions by Cluster Variation Method for Ising Model with NN, NNN, and Plaquette Interactions. Journal of Statistical Physics 94, 67–89 (1999). https://doi.org/10.1023/A:1004507211976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004507211976

Navigation