Skip to main content
Log in

Comparing the Likelihood Functions of Phylogenetic Trees

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

DNA sequence data provide a good source of information on the evolutionary history of organisms. Among the proposed methods, the maximum likelihood methods require an explicit probabilistic model of nucleotide substitution that makes the assumption clear. However, procedures for testing hypotheses on topologies have not been well developed. We propose a revised version of the maximum likelihood estimator of a tree and derive some of its properties. Then we present tests to compare given trees and to derive the most likely candidates for the true topology, applying to maximum likelihoods the notion of contrast, as defined in the framework of the analysis of variance, and the procedures used in multiple comparison. Finally, an example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, D. and Hartigan, J. A. (1987). Statistical analysis of hominoid molecular evolution, Statist. Sci., 2, 191–210.

    Google Scholar 

  • Churchill, G. A., van Haeseler, A. and Navidi, W. C. (1992). Sample size for a phylogenetic inference, Molecular Biology and Evolution, 9, 753–769.

    Google Scholar 

  • Cox, D. R. (1961). Tests of separate families of hypotheses, Proc. 4th Berkeley Symp. on Math. Statist. Prob., Vol. 1, 105–123, University of California Press, Berkeley.

    Google Scholar 

  • Edwards, D. G. and Hsu, J. C. (1983). Multiple comparisons with the best treatment, J. Amer. Statist. Assoc., 78, 965–971.

    Google Scholar 

  • Felsenstein, J. (1978). Cases in which parismony or competibility methods will be positively misleading, Systematic Zoology, 27, 401–410.

    Google Scholar 

  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach, Journal of Molecular Evolution, 17, 368–376.

    Google Scholar 

  • Felsenstein, J. (1983). Statistical inference of phylogenies, J. Roy. Statist. Soc. Ser. A, 146, 246–272.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 39, 783–791.

    Google Scholar 

  • Felsenstein, J. and Kishino, H. (1993). Is there something wrong with the bootstrap on phylogenies?, A reply to Hillis and Bull, Systematic Biology, 42, 193–200.

    Google Scholar 

  • Goldman, N. (1993). Statistical tests of models of DNA substitution, Journal of Molecular Evolution, 36, 182–198.

    Google Scholar 

  • Grad, A. and Solomon, H. (1955). Distribution of quadratic forms and some applications, Ann. Math. Statist., 26, 464–477.

    Google Scholar 

  • Hasegawa, M. and Yano, T. (1984). Phylogeny and classification of Hominoidea as inferred from DNA sequence data, Proceedings of the Japan Academy, B60, 389–392.

    Google Scholar 

  • Hillis, D. M. and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis, Systematic Biology, 42, 182–192.

    Google Scholar 

  • Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures, Wiley, New York.

    Google Scholar 

  • Horai, S., Hayaska, K., Kondo, R., Tsugane, K. and Takahata, N. (1995). Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs, Proc. Nat. Acad. Sci. U.S.A., 92, 532–536.

    Google Scholar 

  • Hsu, J. C. (1984). Constrained simultaneous confidence intervals for multiple comparisons with the best, Ann. Statist., 12, 1136–1144.

    Google Scholar 

  • Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distributions, Wiley, New York.

    Google Scholar 

  • Kimura, M. (1983). The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kishino, H. and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea, Journal of Molecular Evolution, 29, 170–179.

    Google Scholar 

  • Kishino, H., Miyata, T. and Hasagewa, M. (1990). Maximum likelihood inference of protein phylogeny and the origin of chloroplasts, Journal of Molecular Evolution, 31, 151–160.

    Google Scholar 

  • Kullback, S. (1959). Information Theory and Statistics, Dover, New York.

    Google Scholar 

  • Linhart, H. (1988). A test whether two AIC's differ significantly, South African Statist. J., 22, 153–161.

    Google Scholar 

  • Martin, L. (1985). Significance of enamel thickness in hominoid evolution, Nature, 314, 260–263.

    Google Scholar 

  • Navidi, W. C., Churchill, G. A. and von Haeseler, A. (1993). Phylogenetic inference: linear invariants and maximum likelihood, Biometrics, 49, 543–555.

    Google Scholar 

  • Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd ed., Wiley, New York.

    Google Scholar 

  • Sibley, C. G. and Ahlquist, J. E. (1984). The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization, Journal of Molecular Evolution, 20, 2–15.

    Google Scholar 

  • Sitnikova, T., Rzhetsky, A. and Nei, M. (1995). Interior-branch and bootstrap tests of phylogenetic trees, Molecular Biology and Evolution, 12, 319–333.

    Google Scholar 

  • Steiger, J. H., Shapiro, A. and Browne, M. W. (1985). On the multivariate asymptotic distribution of sequential chi-square statistics, Psychometrika, 50, 253–264.

    Google Scholar 

  • Swofford, D. L. and Olsen, G. J. (1990). Phylogeny reconstruction, Molecular Systematics (eds. D. M. Hillis and C. Moritz), 411–501, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Templeton, A. R. (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes, Evolution, 37, 221–244.

    Google Scholar 

  • Ueda, S., Takenaka, O. and Honjo, T. (1985). A truncated immunoglobulin \(\varepsilon\) pseudogene is found in gorilla and man but not in chimpanzee, Proc. Nat. Acad. Sci. U.S.A., 82, 3712–3715.

    Google Scholar 

  • Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non nested hypotheses, Econometrica, 57, 307–333.

    Google Scholar 

  • White, H. (1981). Consequences and detection of misspecified nonlinear regression models, J. Amer. Statist. Assoc., 76, 419–433.

    Google Scholar 

  • White, H. (1982). Maximum likelihood estimation of misspecified models, Econometrica, 50, 253–264.

    Google Scholar 

  • Zharkikh, A. and Li, W. H. (1992a). Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: four taxa with a molecular clock, Molecular Biology and Evolution, 9, 1119–1147.

    Google Scholar 

  • Zharkikh, A. and Li, W. H. (1992b). Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: four taxa without molecular clock, Journal of Molecular Evolution, 35, 356–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bar-Hen, A., Kishino, H. Comparing the Likelihood Functions of Phylogenetic Trees. Annals of the Institute of Statistical Mathematics 52, 43–56 (2000). https://doi.org/10.1023/A:1004180831122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004180831122

Navigation